Ceramics for medical applications: A picture for the next 20 years

[1]  J. Tamura,et al.  In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. , 2005, Journal of biomedical materials research. Part A.

[2]  K. Niihara Nanostructure Design and Mechanical Properties of Ceramic Composites , 1990 .

[3]  Aldo R Boccaccini,et al.  Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics. , 2007, Faraday discussions.

[4]  Pierre Weiss,et al.  Current state of the art of biphasic calcium phosphate bioceramics , 2003, Journal of materials science. Materials in medicine.

[5]  L. Whiteside,et al.  Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. , 2007, Journal of biomedical materials research. Part A.

[6]  A. Boccaccini,et al.  Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. , 2006, Journal of biomedical materials research. Part A.

[7]  F. Shen,et al.  Biologic and tribologic considerations of alternative bearing surfaces. , 2004, Clinical orthopaedics and related research.

[8]  M. Kellomäki,et al.  Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. , 2008, Acta biomaterialia.

[9]  Paul T. Sharpe,et al.  Stem cells and tooth tissue engineering , 2007, Cell and Tissue Research.

[10]  A. Krell,et al.  Transparent ceramics for structural applications: Part 2: Fields of applications , 2007 .

[11]  L. Francis,et al.  Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. , 2002, Journal of biomedical materials research.

[12]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[13]  Xiaodong Li Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells , 2007 .

[14]  F. Rustichelli,et al.  Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation , 2003 .

[15]  Arthur Veis,et al.  Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1 , 2003, Nature materials.

[16]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[17]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of Biomedical Materials Research.

[18]  G. Balossier,et al.  X‐ray microanalysis in STEM of short‐term physicochemical reactions at bioactive glass particle/biological fluid interface. Determination of O/Si atomic ratios , 2004, physics/0412146.

[19]  J. Chevalier,et al.  Nanostructured ceramic oxides with a slow crack growth resistance close to covalent materials. , 2005, Nano letters.

[20]  Eduardo Saiz,et al.  Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[21]  Michael D. Ries,et al.  Ceramics for Prosthetic Hip and Knee Joint Replacement , 2007 .

[22]  A. Bobbio The first endosseous alloplastic implant in the history of man. , 1972, Bulletin of the history of dentistry.

[23]  L. Weiss,et al.  In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. , 1999, Journal of biomedical materials research.

[24]  Jiang Chang,et al.  Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders , 2008 .

[25]  D. Milius,et al.  Inspired by Abalone Shell: Strengthening of Porous Ceramics with Polymers , 2004 .

[26]  G. Willmann,et al.  Ceramic Femoral Head Retrieval Data , 2000, Clinical orthopaedics and related research.

[27]  J. Chevalier,et al.  Slow crack growth behaviour of hydroxyapatite ceramics. , 2005, Biomaterials.

[28]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[29]  J. Chevalier,et al.  What future for zirconia as a biomaterial? , 2006, Biomaterials.

[30]  M Kellomäki,et al.  Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. , 2005, Acta biomaterialia.

[31]  Tadashi Kokubo,et al.  NOVEL BIOACTIVE MATERIALS , 1997 .

[32]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[33]  Francois Barthelat,et al.  Biomimetics for next generation materials , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  M. Anglada,et al.  The Fatigue Behaviour of Mg-PSZ and ZTA Ceramics , 1996 .

[35]  A R Boccaccini,et al.  Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. , 2005, Acta biomaterialia.

[36]  B. Calès Zirconia as a sliding material: histologic, laboratory, and clinical data. , 2000, Clinical orthopaedics and related research.

[37]  H. Attaoui INFLUENCE DU RENFORCEMENT SUR LE COMPORTEMENT EN FATIGUE STATIQUE ET CYCLIQUE DES CÉRAMIQUES MONOLITHIQUES DE TYPE ALUMINE ET ZIRCONE , 2003 .

[38]  Laurent Chazeau,et al.  Toughening of bio-ceramics scaffolds by polymer coating , 2007 .

[39]  Eduardo Saiz,et al.  A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. , 2003, Journal of the American Chemical Society.

[40]  Gordana Vunjak-Novakovic,et al.  Engineering custom-designed osteochondral tissue grafts. , 2008, Trends in biotechnology.

[41]  Yan Li,et al.  Self-assembly of mineralized collagen composites , 2007 .

[42]  Ivan Martin,et al.  Osteochondral tissue engineering. , 2007, Journal of biomechanics.

[43]  F. Frey,et al.  Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations , 2005 .

[44]  R. Torrecillas,et al.  Alumina nanocomposites from powder–alkoxide mixtures , 2002 .

[45]  A. Boccaccini,et al.  Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering , 2002, Journal of materials science. Materials in medicine.

[46]  W. Lim,et al.  Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites , 2005 .

[47]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[48]  Jason A Burdick,et al.  Engineering cartilage tissue. , 2008, Advanced drug delivery reviews.

[49]  Sylvain Deville Etude des mécanismes de renforcement et de dégradation des céramiques biomédicales à base de zircone : du macroscopique au nanoscopique : contribution de la microscopie à force atomique , 2004 .

[50]  Sylvain Deville,et al.  Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants , 2007 .

[51]  A. Mayes,et al.  Polymer--calcium phosphate cement composites for bone substitutes. , 2002, Journal of biomedical materials research.

[52]  E. Landi,et al.  Biomimetic Hybrid Composites to Repair Osteochondral Lesions , 2007 .