Density functional study of neutral and anionic AlOn and ScOn with high oxygen content

The electronic and geometrical structures of neutral and negatively charged AlO5, AlO6, AlO7, AlO8, AlO9, AlO10, AlO11, AlO12, AlO15, AlO16, and AlO18 along with the corresponding series of ScOn and ScO  n− oxides were investigated using density functional theory with generalized gradient approximation. We found that these species possess geometrically stable isomers for all values of n = 5–12, 15, 16, 18 and are thermodynamically stable for n = 5–7. The species with n = 16 are found to be octa‐dioxides M(η1‐O2)8 while the species with n = 15 and 18 are penta‐ozonides (η2‐O3)M(η1‐O3)4 and hexa‐ozonides M(η1‐O3)6, respectively. Geometrical configurations of a number of the lowest total energy states of Al and Sc oxides are different. Especially, drastic differences are found for the anion AlO  n− and ScO  n− pairs at n = 9, 10, and 11. The ScO bonds are longer than the AlO bonds by ≈0.2 Å, which, in turn, slightly affects the corresponding interoxygen bond lengths. The charges on metal atoms are close to +2e in both Al series and to +1.5e in both Sc series. As an extra electron is delocalized over ligands in the presence of a large positive charge on the metal atom of the anions, the electron affinity (EA) of the neutrals along with the ionization energies of the anions are large and exceed the EAs of the halogen atoms in a number of cases. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011

[1]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[2]  Iwona Anusiewicz Superhalogen anions utilizing acidic functional groups as ligands. , 2009, The journal of physical chemistry. A.

[3]  G. Gutsev,et al.  The electron affinities of transition metal atoms at the CCSD(T) and density functional levels of theory , 2002 .

[4]  Gennady L. Gutsev,et al.  Electronic Structure of the 3d Metal Monoxide Anions , 2000 .

[5]  Jill R. Scott,et al.  Experimental and Computational Study of Hydration Reactions of Aluminum Oxide Anion Clusters , 2000 .

[6]  J. P. Mannaerts,et al.  Structure of Sc2O3 films epitaxially grown on α-Al2O3 (0001) , 2006 .

[7]  Gennady L. Gutsev,et al.  Electron Affinities, Ionization Energies, and Fragmentation Energies of Fen Clusters (n = 2−6): A Density Functional Theory Study , 2003 .

[8]  Ernest R. Davidson,et al.  Theoretical Interpretation of the Photoelectron Spectra of Al3O2- and Al3O3- , 1999 .

[9]  W. C. Martin,et al.  A Compilation of Energy Levels and Wavelengths for the Spectrum of Singly‐Ionized Oxygen (O II) , 1993 .

[10]  Alain St-Amant,et al.  The cyclic MO2 (M=Al, Ga) systems: CCSD(T) and DFT studies of their structures, harmonic vibrational frequencies, and dissociation energies , 1998 .

[11]  Alexander I. Boldyrev,et al.  DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens” , 1981 .

[12]  D. Sülzle,et al.  A density functional study of small AlxOy (x,y=1-4) clusters and their thermodynamic properties , 2005 .

[13]  T. Steinke,et al.  Electronic structure investigation of the Al4O4 molecule , 2000 .

[14]  Alain St-Amant,et al.  On the Structure of Al2O3 and Photoelectron Spectra of Al2O2- and Al2O3- , 1999 .

[15]  Foo-Tim Chau,et al.  A combined ab initio and Franck‐Condon factor simulation study on the photodetachment spectrum of ScO2− , 2009, J. Comput. Chem..

[16]  Volker Kahlenberg,et al.  Redetermination of EuScO3 , 2009, Acta crystallographica. Section E, Structure reports online.

[17]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[18]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[19]  Hongbin Wu,et al.  A photoelectron spectroscopic study of monovanadium oxide anions (VOx−, x=1–4) , 1998 .

[20]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[21]  David A Dixon,et al.  Molecular structures and energetics of the (TiO2)n (n = 1-4) clusters and their anions. , 2008, The journal of physical chemistry. A.

[22]  Pedro Alexandrino Fernandes,et al.  General performance of density functionals. , 2007, The journal of physical chemistry. A.

[23]  Caroline Chick Jarrold,et al.  Separating contributions from multiple structural isomers in anion photoelectron spectra: Al3O3− beam hole burning , 2003 .

[24]  Roald Hoffmann,et al.  Transition metal complexes of cyclic and open ozone and thiozone. , 2005, Journal of the American Chemical Society.

[25]  Alexander I. Boldyrev,et al.  Theoretical estimation of the maximal value of the first, second and higher electron affinity of chemical compounds , 1990 .

[26]  Francesc Illas,et al.  Doublet instability and the molecular structure of AlO2 , 1988 .

[27]  Hongbin Wu,et al.  Vibrationally resolved photoelectron spectroscopy of AlO− and AlO2− , 1996 .

[28]  Joachim Sauer,et al.  Identification of conical structures in small aluminum oxide clusters: infrared spectroscopy of (Al2O3)1-4(AlO)+. , 2008, Journal of the American Chemical Society.

[29]  P. Jena,et al.  A systematic study of neutral and charged 3d-metal trioxides and tetraoxides. , 2011, The Journal of chemical physics.

[30]  Ian Morrison,et al.  A computational study of photoisomerization in Al3O3- ­clusters , 2002 .

[31]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[32]  Hongbin Wu,et al.  A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy− (x=1–2, y=1–5) , 1997 .

[33]  Alain St-Amant,et al.  Molecular Structure of the AlO2 Dimer, Al2O4 , 1998 .

[34]  Hongbin Wu,et al.  Chemical Bonding between Cu and OxygenCopper Oxides vs O2 Complexes: A Study of CuOx (x = 0−6) Species by Anion Photoelectron Spectroscopy , 1997 .

[35]  E. Tyo,et al.  Oxidation of CO by aluminum oxide cluster ions in the gas phase. , 2008, The journal of physical chemistry. A.

[36]  W. C. Lineberger,et al.  The Only Stable State of O2- Is the X 2Πg Ground State and It (Still!) Has an Adiabatic Electron Detachment Energy of 0.45 eV , 2003 .

[37]  Christopher J. Cramer,et al.  Variable character of O—O and M—O bonding in side-on (η2) 1:1 metal complexes of O2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Herman Pines,et al.  Alumina: Catalyst and Support. IV.1 Aromatization and Dehydroisomerization of 1,1-Dimethylcyclohexane, 4,4-Dimethylcyclohexene and of Methylcycloheptane over Chromia-Alumina Catalysts2 , 1960 .

[39]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[40]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[41]  Alexander I. Boldyrev,et al.  FIRST EXPERIMENTAL PHOTOELECTRON SPECTRA OF SUPERHALOGENS AND THEIR THEORETICAL INTERPRETATIONS , 1999 .

[42]  Don W. Arnold,et al.  Study of low‐lying electronic states of ozone by anion photoelectron spectroscopy of O−3 , 1994 .

[43]  Mark S. Gordon,et al.  The potential energy surfaces for AlO2 using multi-reference wave functions , 2001 .

[44]  Mingfei Zhou,et al.  Formation and characterization of the oxygen-rich scandium oxide/dioxygen complexes ScOn (n = 4, 6, 8) in solid argon. , 2007, The journal of physical chemistry. A.

[45]  G. Gutsev,et al.  The electronic structure of chalcogen hexahalogenides , 1983 .

[46]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[47]  Jerzy Leszczynski,et al.  Cyclic-AlO2 revisited , 1998 .

[48]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[49]  Michael A. Duncan,et al.  Structure determination of gas phase aluminum oxide clusters , 2003 .

[50]  Lester Andrews,et al.  Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. , 2009, Chemical reviews.

[51]  Jason T. Yustein,et al.  Reactions of pulsed-laser evaporated aluminum atoms with oxygen: infrared spectra of the reaction products in solid argon , 1992 .

[52]  Ponnadurai Ramasami,et al.  Geometric and electronic structure of AlO4 and AlO4 , 2009 .

[53]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[54]  P Jena,et al.  Structure and spectroscopic properties of iron oxides with the high content of oxygen: FeO(n) and FeO(n)(-) (n = 5-12). , 2010, The journal of physical chemistry. A.

[55]  B. K. Rao,et al.  Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions , 2000 .

[56]  Xin Yang,et al.  On the electronic structures of gaseous transition metal halide complexes, FeX4− and MX3−(M=Mn, Fe, Co, Ni, X=Cl, Br), using photoelectron spectroscopy and density functional calculations , 2003 .

[57]  Donald G Truhlar,et al.  Tests of the RPBE, revPBE, tau-HCTHhyb, omegaB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. , 2010, The Journal of chemical physics.

[58]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[59]  Peter Lievens,et al.  Combined experimental and theoretical study of small aluminum oxygen clusters , 2007 .

[60]  F. Grein,et al.  The ClO4 radical: a theoretical study on ground and excited states , 2009 .

[61]  Henry F. Schaefer,et al.  The ClO4 radical: Experiment versus theory , 1997 .

[62]  G. Van Tendeloo,et al.  Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis , 2006 .

[63]  W. C. Martin,et al.  Wavelengths and Energy Level Classifications for the Spectra of Aluminum (Ali through Alxiii) , 1991 .

[64]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[65]  Cheol Ho Choi,et al.  Ground and excited states of Al2O2 and its anion , 2005 .

[66]  Henry F. Schaefer,et al.  Analyses of the ScO− and ScO2− photoelectron spectra , 2000 .

[67]  M. Duncan,et al.  Infrared spectroscopy and structures of manganese carbonyl cations, Mn(CO)n+ (n = 1−9) , 2010, Journal of the American Society for Mass Spectrometry.

[68]  A. I. Boldyrev,et al.  DVM α calculations on the electronic structure of complex chlorine anions , 1981 .

[69]  F. Grein,et al.  Ground and low-lying excited C2v states of FeO2—A challenge to computational methods , 2009 .

[70]  J. V. Ortiz,et al.  Electronic Structure of AlO2, AlO2-, Al3O5, and Al3O5-Clusters , 2001 .

[71]  Joachim Sauer,et al.  Unexpected structures of aluminum oxide clusters in the gas phase. , 2007, Angewandte Chemie.

[72]  Sebastian Riedel,et al.  The highest oxidation states of the transition metal elements , 2009 .

[73]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[74]  Marzio Rosi,et al.  Reactions of Laser-Ablated Scandium Atoms with Dioxygen. Infrared Spectra of ScO, OScO, (O2)ScO, (ScO)2, and Sc(O2)2 in Solid Argon , 1997 .

[75]  Hongbin Wu,et al.  Photoelectron Spectroscopy and Electronic Structure of ScOn- (n = 1−4) and YOn- (n = 1−5): Strong Electron Correlation Effects in ScO-and YO- , 1998 .

[76]  E. L. Muñoz,et al.  PAC study of dynamic hyperfine interactions at 111In-doped Sc2O3 semiconductor and comparison with ab initio calculations , 2010 .

[77]  Alexander I. Boldyrev,et al.  The Theoretical Investigation of the Electron Affinity of Chemical Compounds , 2007 .

[78]  Kevin E. Riley,et al.  Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. , 2007, Journal of chemical theory and computation.

[79]  David A Dixon,et al.  Accurate thermochemistry for transition metal oxide clusters. , 2009, The journal of physical chemistry. A.

[80]  Kalpataru Pradhan,et al.  Negative ions of transition metal-halogen clusters. , 2010, The Journal of chemical physics.

[81]  N. Ross,et al.  High pressure study of ScAlO3 perovskite , 1998 .

[82]  J. W. Gallagher,et al.  Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions , 1993 .

[83]  David A. Dixon,et al.  Probing the electronic and structural properties of chromium oxide clusters (CrO3)n(-) and (CrO3)n (n = 1-5): photoelectron spectroscopy and density functional calculations. , 2008, Journal of the American Chemical Society.

[84]  Hansgeorg Schnöckel,et al.  The molecules AlO2, Al(O2)2, and Al(O2)3: experimental and quantum-chemical investigations on the oxidation of aluminum atoms. , 2005, Angewandte Chemie.

[85]  Wang Lj,et al.  Laser photodetachment of O3 , 1987 .

[86]  B. K. Rao,et al.  Origin of the unusual stability of MnO4 , 1999 .

[87]  J. V. Ortiz,et al.  Electronic Structure of Al3Onand Al3On-(n= 1-3) Clusters , 2001 .

[88]  Jan Almlöf,et al.  Theoretical investigations of AlO2 , 1992 .

[89]  Michael J. Ferguson,et al.  Negative ion photodetachment spectroscopy of the Al3O2, Al3O3, Al4Ox, Al5Ox(x = 3–5), Al6O5, and Al7O5 clusters , 2003 .

[90]  Rodney J. Bartlett,et al.  Electric quadrupole moments and electron affinities of atoms from H to Cl: a coupled-cluster study , 1998 .

[91]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[92]  Piotr Skurski,et al.  An ab initio study on BeX3− superhalogen anions (X = F, Cl, Br) , 2002 .

[93]  Rodney J. Bartlett,et al.  Structure and stability of the AlX and AlX− species , 1999 .