Mismatch-mediated error prone repair at the immunoglobulin genes.

[1]  R. Fuleihan,et al.  The Hyper IgM Syndromes , 2014, Clinical Reviews in Allergy & Immunology.

[2]  M. Marinus,et al.  DNA Mismatch Repair , 2012, EcoSal Plus.

[3]  N. de Wind,et al.  PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance. , 2011, DNA repair.

[4]  A. Kirchmaier Ub‐family modifications at the replication fork: Regulating PCNA‐interacting components , 2011, FEBS letters.

[5]  C. E. Schrader,et al.  AID Binds Cooperatively with UNG and Msh2-Msh6 to Ig Switch Regions Dependent upon the AID C Terminus , 2011, The Journal of Immunology.

[6]  F. Alt,et al.  Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination , 2011, The Journal of experimental medicine.

[7]  A. Klein-Szanto,et al.  Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair , 2011, Cell.

[8]  J. Stavnezer Complex regulation and function of activation-induced cytidine deaminase. , 2011, Trends in immunology.

[9]  G. Ming,et al.  Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain , 2011, Cell.

[10]  A. Bird,et al.  Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability , 2011, Nature.

[11]  S. Boulton,et al.  The choice in meiosis – defining the factors that influence crossover or non-crossover formation , 2011, Journal of Cell Science.

[12]  F. Alt,et al.  The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates , 2011, Cell.

[13]  C. Niehrs,et al.  Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles , 2011, PloS one.

[14]  Jayanta Chaudhuri,et al.  CtIP promotes microhomology-mediated alternative end-joining during class switch recombination , 2010, Nature Structural &Molecular Biology.

[15]  J. Sekelsky,et al.  Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  R. Chahwan,et al.  Crosstalk between genetic and epigenetic information through cytosine deamination. , 2010, Trends in genetics : TIG.

[17]  Vasco M. Barreto,et al.  Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Polymerase II Stalling by Interaction with Spt5 , 2010, Cell.

[18]  A. Bielinsky,et al.  Damage-specific modification of PCNA , 2010, Cell cycle.

[19]  K. Zhao,et al.  PTIP Promotes Chromatin Changes Critical for Immunoglobulin Class Switch Recombination , 2010, Science.

[20]  W. Edelmann,et al.  PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance , 2010, Proceedings of the National Academy of Sciences.

[21]  W. Edelmann,et al.  MSH2/MSH6 Complex Promotes Error-Free Repair of AID-Induced dU:G Mispairs as well as Error-Prone Hypermutation of A:T Sites , 2010, PloS one.

[22]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[23]  T. Glover,et al.  Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. , 2010, DNA repair.

[24]  Helen M. Blau,et al.  Reprogramming towards pluripotency requires AID-dependent DNA demethylation , 2010, Nature.

[25]  M. Pellegrini,et al.  Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency , 2010, Nature.

[26]  D. Durocher,et al.  The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination , 2009, Proceedings of the National Academy of Sciences.

[27]  A. Bielinsky,et al.  Defects in DNA Ligase I Trigger PCNA Ubiquitination at Lysine 107 , 2009, Nature Cell Biology.

[28]  P. V. D. van den Berk,et al.  Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation , 2009, The Journal of experimental medicine.

[29]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[30]  A. Khamlichi,et al.  S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination , 2009, The Journal of experimental medicine.

[31]  Alberto Martin,et al.  The Concerted Action of Msh2 and UNG Stimulates Somatic Hypermutation at A · T Base Pairs , 2009, Molecular and Cellular Biology.

[32]  C. Schofield,et al.  Oxygenase catalyzed 5-methylcytosine hydroxylation. , 2009, Chemistry & biology.

[33]  P. Modrich,et al.  Functions of MutLα, Replication Protein A (RPA), and HMGB1 in 5′-Directed Mismatch Repair* , 2009, The Journal of Biological Chemistry.

[34]  N. Heintz,et al.  The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain , 2009, Science.

[35]  M. Scharff,et al.  H3 trimethyl K9 and H3 acetyl K9 chromatin modifications are associated with class switch recombination , 2009, Proceedings of the National Academy of Sciences.

[36]  B. Cairns,et al.  DNA Demethylation in Zebrafish Involves the Coupling of a Deaminase, a Glycosylase, and Gadd45 , 2008, Cell.

[37]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[38]  A. Fischer,et al.  Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination , 2008, The Journal of experimental medicine.

[39]  A. Bergman,et al.  Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression , 2008, Proceedings of the National Academy of Sciences.

[40]  G. Felsenfeld,et al.  Analysis of intergenic transcription and histone modification across the human immunoglobulin heavy-chain locus , 2008, Proceedings of the National Academy of Sciences.

[41]  K. Myung,et al.  PCNA modifications for regulation of post-replication repair pathways. , 2008, Molecules and cells.

[42]  Sergio Roa,et al.  The biochemistry of somatic hypermutation. , 2008, Annual review of immunology.

[43]  D. Schatz,et al.  Two levels of protection for the B cell genome during somatic hypermutation , 2008, Nature.

[44]  T. Kunkel,et al.  Saccharomyces cerevisiae MutLα Is a Mismatch Repair Endonuclease* , 2007, Journal of Biological Chemistry.

[45]  G. Teng,et al.  Immunoglobulin somatic hypermutation. , 2007, Annual review of genetics.

[46]  Zhongliang Ju,et al.  Evidence for Physical Interaction between the Immunoglobulin Heavy Chain Variable Region and the 3′ Regulatory Region* , 2007, Journal of Biological Chemistry.

[47]  Megan Nguyen,et al.  Mutations affecting a putative MutLalpha endonuclease motif impact multiple mismatch repair functions. , 2007, DNA repair.

[48]  David G. Schatz,et al.  Strand-Biased Spreading of Mutations During Somatic Hypermutation , 2007, Science.

[49]  L. Prakash,et al.  Mutations in the Ubiquitin Binding UBZ Motif of DNA Polymerase η Do Not Impair Its Function in Translesion Synthesis during Replication , 2007, Molecular and Cellular Biology.

[50]  P. V. D. van den Berk,et al.  A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification , 2007, The Journal of experimental medicine.

[51]  A. Lehmann,et al.  Translesion synthesis: Y-family polymerases and the polymerase switch. , 2007, DNA repair.

[52]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[53]  R. Wood,et al.  DNA Polymerases η and θ Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes* , 2007, Journal of Biological Chemistry.

[54]  M. Otterlei,et al.  Uracil in DNA--general mutagen, but normal intermediate in acquired immunity. , 2007, DNA repair.

[55]  Ralph Schlapbach,et al.  Characterization of the Interactome of the Human MutL Homologues MLH1, PMS1, and PMS2* , 2007, Journal of Biological Chemistry.

[56]  F. Delbos,et al.  DNA polymerase η is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse , 2007, The Journal of experimental medicine.

[57]  D. Schatz,et al.  Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences , 2006, Journal of Experimental Medicine.

[58]  A. Fischer,et al.  Activation‐induced cytidine deaminase: structure–function relationship as based on the study of mutants , 2006, Human mutation.

[59]  S. Jentsch,et al.  A Role for PCNA Ubiquitination in Immunoglobulin Hypermutation , 2006, PLoS biology.

[60]  J. Sale,et al.  RAD18‐independent ubiquitination of proliferating‐cell nuclear antigen in the avian cell line DT40 , 2006, EMBO reports.

[61]  B. Jungnickel,et al.  Involvement of Rad18 in somatic hypermutation , 2006, Proceedings of the National Academy of Sciences.

[62]  P. Modrich,et al.  Endonucleolytic Function of MutLα in Human Mismatch Repair , 2006, Cell.

[63]  P. Casali,et al.  DNA repair in antibody somatic hypermutation. , 2006, Trends in immunology.

[64]  P. Cohen,et al.  A role for Mlh3 in somatic hypermutation. , 2006, DNA repair.

[65]  Vasco M. Barreto,et al.  Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Jiricny The multifaceted mismatch-repair system , 2006, Nature Reviews Molecular Cell Biology.

[67]  S. Lipkin,et al.  A Role for the MutL Mismatch Repair Mlh3 Protein in Immunoglobulin Class Switch DNA Recombination and Somatic Hypermutation1 , 2006, The Journal of Immunology.

[68]  L. Prakash,et al.  Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Friedberg Reversible monoubiquitination of PCNA: A novel slant on regulating translesion DNA synthesis. , 2006, Molecular cell.

[70]  H. Ulrich Deubiquitinating PCNA: a downside to DNA damage tolerance , 2006, Nature Cell Biology.

[71]  W. Edelmann,et al.  The mismatch repair protein Msh6 influences the in vivo AID targeting to the Ig locus. , 2006, Immunity.

[72]  Steven M. Lipkin,et al.  Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis , 2006, Nucleic acids research.

[73]  P. Modrich,et al.  DNA mismatch repair: functions and mechanisms. , 2006, Chemical reviews.

[74]  A. Kenter,et al.  AID-dependent histone acetylation is detected in immunoglobulin S regions , 2006, The Journal of experimental medicine.

[75]  Susan D. Lee,et al.  Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. , 2006, Journal of molecular biology.

[76]  P. Burgers,et al.  Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  N. Maizels Immunoglobulin gene diversification. , 2005, Annual review of genetics.

[78]  A. Tomkinson,et al.  Reconstitution of 5′-Directed Human Mismatch Repair in a Purified System , 2005, Cell.

[79]  E. Marcon,et al.  The evolution of meiosis: Recruitment and modification of somatic DNA‐repair proteins , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[80]  F. Hanaoka,et al.  Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Carter,et al.  CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. , 2005, Immunity.

[82]  P. Casali,et al.  DNA Lesions and Repair in Immunoglobulin Class Switch Recombination and Somatic Hypermutation , 2005, Annals of the New York Academy of Sciences.

[83]  F. Delbos,et al.  Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse , 2005, The Journal of experimental medicine.

[84]  N. Maizels,et al.  MutSα Binds to and Promotes Synapsis of Transcriptionally Activated Immunoglobulin Switch Regions , 2005, Current Biology.

[85]  Alberto Martin,et al.  Methylation protects cytidines from AID-mediated deamination. , 2005, Molecular immunology.

[86]  Victor V Lobanenkov,et al.  Chromatin Architecture near a Potential 3′ End of the Igh Locus Involves Modular Regulation of Histone Modifications during B-Cell Development and In Vivo Occupancy at CTCF Sites , 2005, Molecular and Cellular Biology.

[87]  T. Golub,et al.  Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. , 2004, Blood.

[88]  P. Peltomäki,et al.  Mutations Associated with HNPCC Predisposition — Update of ICG-HNPCC/INSiGHT Mutation Database , 2004, Disease markers.

[89]  M. Neuberger,et al.  Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. , 2004, Molecular cell.

[90]  L. Edelmann,et al.  Loss of DNA mismatch repair function and cancer predisposition in the mouse: Animal models for human hereditary nonpolyposis colorectal cancer , 2004, American journal of medical genetics. Part C, Seminars in medical genetics.

[91]  Mimi Y. Kim,et al.  Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. , 2004, Cancer cell.

[92]  Alberto Martin,et al.  Examination of Msh6- and Msh3-deficient Mice in Class Switching Reveals Overlapping and Distinct Roles of MutS Homologues in Antibody Diversification , 2004, The Journal of experimental medicine.

[93]  F. Alt,et al.  Class-switch recombination: interplay of transcription, DNA deamination and DNA repair , 2004, Nature Reviews Immunology.

[94]  D. Schatz,et al.  Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. , 2004, International immunology.

[95]  Reuben S Harris,et al.  Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. , 2004, Journal of molecular biology.

[96]  Alberto Martin,et al.  Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1–mutant mice , 2004, Nature Immunology.

[97]  R. Kucherlapati,et al.  An Msh2 Point Mutation Uncouples DNA Mismatch Repair and Apoptosis , 2004, Cancer Research.

[98]  Alberto Martin,et al.  Msh2 ATPase Activity Is Essential for Somatic Hypermutation at A-T Basepairs and for Efficient Class Switch Recombination , 2003, The Journal of experimental medicine.

[99]  E. Selsing,et al.  The Smu tandem repeat region is critical for Ig isotype switching in the absence of Msh2. , 2003, Immunity.

[100]  E. G. Frank,et al.  129-derived Strains of Mice Are Deficient in DNA Polymerase ι and Have Normal Immunoglobulin Hypermutation , 2003, The Journal of experimental medicine.

[101]  Vasco M. Barreto,et al.  C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. , 2003, Molecular cell.

[102]  U. Storb,et al.  The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. , 2003, Immunity.

[103]  F. Alt,et al.  Chromatin dynamics and locus accessibility in the immune system , 2003, Nature Immunology.

[104]  C. E. Schrader,et al.  Mlh1 Can Function in Antibody Class Switch Recombination Independently of Msh2 , 2003, The Journal of experimental medicine.

[105]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Alberto Martin,et al.  Cutting Edge: The G-U Mismatch Glycosylase Methyl-CpG Binding Domain 4 Is Dispensable for Somatic Hypermutation and Class Switch Recombination 1 , 2003, The Journal of Immunology.

[107]  J. Weill,et al.  Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota , 2002, Nature.

[108]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[109]  T. Kunkel,et al.  DNA Binding Properties of the Yeast Msh2-Msh6 and Mlh1-Pms1 Heterodimers , 2002, Biological chemistry.

[110]  K. Samuel,et al.  DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. , 2002, Journal of cell science.

[111]  C. E. Schrader,et al.  Role for Mismatch Repair Proteins Msh2, Mlh1, and Pms2 in Immunoglobulin Class Switching Shown by Sequence Analysis of Recombination Junctions , 2002, The Journal of experimental medicine.

[112]  M. Flajnik,et al.  Decreased Frequency of Somatic Hypermutation and Impaired Affinity Maturation but Intact Germinal Center Formation in Mice Expressing Antisense RNA to DNA Polymerase ζ1 , 2001, The Journal of Immunology.

[113]  M. Flajnik,et al.  The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. , 2001, Immunity.

[114]  H. Kleczkowska,et al.  hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. , 2001, Genes & development.

[115]  P. Peltomäki,et al.  DNA mismatch repair and cancer. , 2001, Mutation research.

[116]  M. Goodman,et al.  A new class of errant DNA polymerases provides candidates for somatic hypermutation. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[117]  M. Goodman,et al.  Error-Prone Candidates Vie for Somatic Mutation , 2000, The Journal of experimental medicine.

[118]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[119]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[120]  U. Storb,et al.  The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. , 2000, International immunology.

[121]  W. Edelmann,et al.  Somatic Hypermutation in Muts Homologue (Msh)3-, Msh6-, and Msh3/Msh6-Deficient Mice Reveals a Role for the Msh2–Msh6 Heterodimer in Modulating the Base Substitution Pattern , 2000, The Journal of experimental medicine.

[122]  R. Kucherlapati,et al.  Reduced Isotype Switching in Splenic B Cells from Mice Deficient in Mismatch Repair Enzymes , 1999, The Journal of experimental medicine.

[123]  T. Honjo,et al.  Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells* , 1999, The Journal of Biological Chemistry.

[124]  M. Neuberger,et al.  Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class‐switch recombination: parallels with somatic hypermutation , 1999, The EMBO journal.

[125]  F. Alt,et al.  Class Switching in B Cells Lacking 3′ Immunoglobulin Heavy Chain Enhancers , 1998, The Journal of experimental medicine.

[126]  C. Milstein,et al.  Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. , 1998, Immunity.

[127]  R. Tarone,et al.  Increased Hypermutation at G and C Nucleotides in Immunoglobulin Variable Genes from Mice Deficient in the MSH2 Mismatch Repair Protein , 1998, The Journal of experimental medicine.

[128]  J. Hackett,et al.  Cis‐acting sequences that affect somatic hypermutation of Ig genes , 1998, Immunological reviews.

[129]  F. Alt,et al.  S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. , 1994, The EMBO journal.

[130]  G. Kelsoe,et al.  In situ studies of the primary immune response to (4-hydroxy-3- nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells , 1993, The Journal of experimental medicine.

[131]  M. Nussenzweig,et al.  AID targeting in antibody diversity. , 2011, Advances in immunology.

[132]  Likun Du,et al.  Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. , 2010, Advances in immunology.

[133]  R. Maul,et al.  AID and somatic hypermutation. , 2010, Advances in immunology.

[134]  A. Durandy,et al.  Inherited defects of immunoglobulin class switch recombination. , 2010, Advances in experimental medicine and biology.

[135]  V. Duvvuri,et al.  Altered spectrum of somatic hypermutation in common variable immunodeficiency disease characteristic of defective repair of mutations , 2010, Immunogenetics.

[136]  E. Steele Mechanism of somatic hypermutation: critical analysis of strand biased mutation signatures at A:T and G:C base pairs. , 2009, Molecular immunology.

[137]  L. Pasqualucci,et al.  AID is required for germinal center–derived lymphomagenesis , 2008, Nature Genetics.

[138]  F. Papavasiliou,et al.  Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection. , 2007, Advances in immunology.

[139]  U. Storb,et al.  Targeting of AID to immunoglobulin genes. , 2007, Advances in experimental medicine and biology.

[140]  M. Neuberger,et al.  DNA deamination in immunity: AID in the context of its APOBEC relatives. , 2007, Advances in immunology.

[141]  F. Alt,et al.  Evolution of the immunoglobulin heavy chain class switch recombination mechanism. , 2007, Advances in immunology.

[142]  T. Honjo,et al.  Role of AID in tumorigenesis. , 2007, Advances in immunology.

[143]  R. Wood,et al.  DNA polymerases eta and theta function in the same genetic pathway to generate mutations at A/T during somatic hypermutation of Ig genes. , 2007, The Journal of biological chemistry.

[144]  Mike O'Donnell,et al.  Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. , 2007, The Journal of biological chemistry.

[145]  C. E. Schrader,et al.  Mismatch repair converts AID-instigated nicks to double-strand breaks for antibody class-switch recombination. , 2006, Trends in genetics : TIG.

[146]  P. Modrich,et al.  Endonucleolytic function of MutLalpha in human mismatch repair. , 2006, Cell.

[147]  C. Woo,et al.  The generation of antibody diversity through somatic hypermutation and class switch recombination. , 2004, Genes & development.

[148]  P. Peltomäki Lynch Syndrome Genes , 2004, Familial Cancer.

[149]  F. Alt,et al.  Mechanism and control of class-switch recombination. , 2002, Trends in immunology.

[150]  P. Gearhart,et al.  DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes , 2001, Nature Immunology.

[151]  J. Stavnezer Molecular processes that regulate class switching. , 2000, Current topics in microbiology and immunology.

[152]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription. , 1998, Current topics in microbiology and immunology.

[153]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. , 1996, Immunity.

[154]  F. Alt,et al.  Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. , 1996, Annual review of immunology.