Stack filters and the mean absolute error criterion

A method to determine the stack filter which minimizes the mean absolute error between its output and a desired signal, given noisy observations of this desired signal, is presented. Specifically, an optimal window-width-b stack filter can be determined with a linear program with O(b2/sup b/) variables. This algorithm is efficient since the number of different inputs to a window-width-b filter is M/sup b/ if the filter has M-valued input and the number of stack filters grows faster than 2 raised to the 2/sup b/2/ power. It is shown that optimal stack filtering under the mean-absolute-error criterion is analogous to optimal linear filtering under the mean-squared-error criterion: both linear filters and stack filters are defined by superposition properties, both classes are implementable, and both have tractable procedures for finding the optimal filter under an appropriate error criterion. >

[1]  Arthur R. Butz A class of rank order smoothers , 1986, IEEE Trans. Acoust. Speech Signal Process..

[2]  Edward J. Coyle,et al.  Rank order operators and the mean absolute error criterion , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[4]  Edward J. Coyle,et al.  Threshold decomposition of multidimensional ranked order operations , 1985 .

[5]  Gonzalo R. Arce,et al.  Theoretical analysis of the max/Median filter , 1987, IEEE Trans. Acoust. Speech Signal Process..

[6]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[7]  Edward J. Coyle,et al.  Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[8]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[9]  Petros Maragos,et al.  A unification of linear, median, order-statistics and morphological filters under mathematical morphology , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  G. Arce,et al.  On the synthesis of median filter systems , 1987 .

[11]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[12]  J. Fitch,et al.  Median filtering by threshold decomposition , 1984 .

[13]  C. R. BAUGH Bounds on the Number of Pseudothreshold Functions , 1971, IEEE Transactions on Computers.

[14]  G. Markowsky,et al.  On Dedekind’s problem: the number of isotone Boolean functions. II , 1975 .

[15]  G. Arce,et al.  State description for the root-signal set of median filters , 1982 .

[16]  Yong Hoon Lee,et al.  Generalized median filtering and related nonlinear filtering techniques , 1985, IEEE Trans. Acoust. Speech Signal Process..

[17]  Thomas S. Huang,et al.  A generalization of median filtering using linear combinations of order statistics , 1983 .

[18]  S. G. Tyan,et al.  Median Filtering: Deterministic Properties , 1981 .

[19]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..