Equation-Free Multiscale Computations in Social Networks: from Agent-Based Modeling to Coarse-Grained Stability and bifurcation Analysis

We focus on the "trijunction" between multiscale computations, bifurcation theory and social networks. In particular, we address how the Equation-Free approach, a recently developed computational framework, can be exploited to systematically extract coarse-grained, emergent dynamical information by bridging detailed, agent-based models of social interactions on networks, with macroscopic, systems-level, continuum numerical analysis tools. For our illustrations, we use a simple dynamic agent-based model describing the propagation of information between individuals interacting under mimesis in a social network with private and public information. We describe the rules governing the evolution of the agents' emotional state dynamics and discover, through simulation, multiple stable stationary states as a function of the network topology. Using the Equation-Free approach we track the dependence of these stationary solutions on network parameters and quantify their stability in the form of coarse-grained bifurcation diagrams.

[1]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[2]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Stauffer,et al.  Agent-based Models of Financial Markets , 2007, physics/0701140.

[4]  W. Cooley,et al.  Multivariate Data Analysis , 1972 .

[5]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[6]  G. Iori A Microsimulation of Traders Activity in the Stock Market: The Role of Heterogeneity, Agents' Interactions and Trade Frictions , 2002 .

[7]  J. Hopcroft,et al.  Are randomly grown graphs really random? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[9]  Constantinos Theodoropoulos,et al.  Effective bifurcation analysis: a time-stepper-based approach , 2002 .

[10]  M. Keeling The implications of network structure for epidemic dynamics. , 2005, Theoretical population biology.

[11]  J. Edney,et al.  Paradoxes on the commons: Scarcity and the problem of equality , 1981 .

[12]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[13]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[14]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Shirley Gregor,et al.  The effects of behavioral and structural assumptions in artificial stock market , 2008 .

[16]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[17]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[18]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[19]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[20]  Kevin M. Passino,et al.  Stable social foraging swarms in a noisy environment , 2004, IEEE Transactions on Automatic Control.

[21]  Bela Bollobas,et al.  Graph theory , 1979 .

[22]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[23]  A Díaz-Guilera,et al.  Modeling diffusion of innovations in a social network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[26]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[27]  L. E. Scriven,et al.  Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem , 1988, J. Sci. Comput..

[28]  Kay W. Axhausen,et al.  An Agent-Based Microsimulation Model of Swiss Travel: First Results , 2003 .

[29]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[30]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[31]  A. Sasaki,et al.  ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  S N Dorogovtsev,et al.  Language as an evolving word web , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Ioannis G. Kevrekidis,et al.  “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples , 2001, nlin/0111038.

[34]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[35]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[36]  Roger L. Hughes,et al.  The flow of large crowds of pedestrians , 2000 .

[37]  I M Longini,et al.  Predicting the global spread of new infectious agents. , 1986, American journal of epidemiology.

[38]  Simon A. Levin,et al.  Frontiers in Mathematical Biology , 1995 .

[39]  M. Keeling,et al.  Networks and epidemic models , 2005, Journal of The Royal Society Interface.

[40]  Changshui Zhang,et al.  Microscopic model of financial markets based on belief propagation , 2005 .

[41]  Renaud Lambiotte,et al.  Unanimity rule on networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Caroline A. Jones Connecting Blazons and Neurons , 2008, Science.

[43]  Deock-Ho Ha,et al.  Characteristics of networks in financial markets , 2007, Comput. Phys. Commun..

[44]  Kent D. Daniel,et al.  Investor Psychology in Capital Markets: Evidence and Policy Implications , 2001 .

[45]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[46]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[47]  Sheridan Titman,et al.  Feedback and the success of irrational investors , 2006 .

[48]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Lawrence Sirovich,et al.  Modeling a large population of traders: Mimesis and stability☆ , 2006 .

[50]  Josep Perelló,et al.  Diffusion Entropy technique applied to the study of the market activity , 2005 .

[51]  R. S. Jackson The Tipping Point: How Little Things Make a Big Difference , 2007 .

[52]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[53]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[54]  Richard Topol,et al.  Bubbles and Volatility of Stock Prices: Effect of Mimetic Contagion , 1991 .

[55]  I. Kevrekidis,et al.  Coarse-grained analysis of stochasticity-induced switching between collective motion states , 2007, Proceedings of the National Academy of Sciences.

[56]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Strogatz Exploring complex networks , 2001, Nature.

[59]  Bikas K. Chakrabarti,et al.  Econophysics and Sociophysics , 2006 .

[60]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[61]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[62]  Robin I. M. Dunbar Coevolution of neocortical size, group size and language in humans , 1993, Behavioral and Brain Sciences.

[63]  M. Marchesi,et al.  Agent-based simulation of a financial market , 2001, cond-mat/0103600.

[64]  C. Dorso,et al.  Microscopic dynamics of pedestrian evacuation , 2005 .

[65]  Kai Nagel,et al.  Large-Scale Multi-Agent Simulations for Transportation Applications , 2004, J. Intell. Transp. Syst..

[66]  R. Axelrod The Complexity of Cooperation , 2011 .

[67]  Juan M López,et al.  Nonequilibrium phase transition in a model for the propagation of innovations among economic agents. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  R. Lambiotte,et al.  Majority model on a network with communities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Claudio J. Tessone,et al.  System size stochastic resonance in a model for opinion formation , 2004, cond-mat/0409620.

[70]  R. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[71]  Wolfgang Weidlich,et al.  Sociodynamics: a Systematic Approach to Mathematical Modelling in the Social Sciences , 2000 .

[72]  Bikas K. Chakrabarti,et al.  Econophysics and Sociophysics : Trends and Perspectives , 2006 .

[73]  Marsili,et al.  Nonequilibrium phase transition in a model for social influence , 2000, Physical review letters.

[74]  I. G. Kevrekidis,et al.  Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation , 2003 .

[75]  L. Steels Evolving grounded communication for robots , 2003, Trends in Cognitive Sciences.

[76]  L. Steels,et al.  Social dynamics: Emergence of language , 2007 .

[77]  Douglas R. White,et al.  Role models for complex networks , 2007, 0708.0958.

[78]  A. G. Boudouvis,et al.  A timestepper approach for the systematic bifurcation and stability analysis of polymer extrusion dynamics , 2007, 0707.3764.

[79]  I. Karimi,et al.  Agent-based supply chain management—1: framework , 2002 .