Fast solvers for queueing systems with negative customers
暂无分享,去创建一个
Michael K. Ng | Wai-Ki Ching | You-Wei Wen | M. Ng | W. Ching | Y. Wen
[1] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[2] R. Chan,et al. Preconditioners for non‐Hermitian Toeplitz systems , 2001 .
[3] Wai-Ki Ching,et al. Inverse Toeplitz preconditioners for Hermitian Toeplitz systems , 2005, Numer. Linear Algebra Appl..
[4] Erol Gelenbe,et al. Product form networks with negative and positive customers , 1991 .
[5] Michael K. Ng,et al. Markov Chains: Models, Algorithms and Applications (International Series in Operations Research & Management Science) , 2005 .
[6] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[7] George Labahn,et al. Inversion of Toeplitz Matrices with Only Two Standard Equations , 1992 .
[8] Wai-Ki Ching,et al. Iterative Methods for Queuing Systems with Batch Arrivals and Negative Customers , 2003 .
[9] Thomas Strohmer. Four short stories about Toeplitz matrix calculations , 2000 .
[10] Raymond H. Chan,et al. Preconditioners for non-Hermitian Toeplitz systems , 2001, Numer. Linear Algebra Appl..
[11] Michael K. Ng,et al. On inversion of Toeplitz matrices , 2002 .
[12] Georg Heinig. On the reconstruction of Toeplitz matrix inverses from columns , 2002 .
[13] E. Gelenbe. Product-form queueing networks with negative and positive customers , 1991 .
[14] Tak Kuen Siu,et al. Markov Chains: Models, Algorithms and Applications , 2006 .
[15] Erol Gelenbe,et al. Queues with negative arrivals , 1991, Journal of Applied Probability.
[16] Tamir Shalom,et al. On inversion of Toeplitz and close to Toeplitz matrices , 1986 .
[17] Hong Liu,et al. A note on the stability of Toeplitz matrix inversion formulas , 2004, Appl. Math. Lett..