Toward Controllable Molecular Shuttles

A number of nanometer-scale molecular assemblies, based on rotaxane-type structures, have been synthesized by means of a template-directed strategy from simple building blocks that, on account of the molecular recognition arising from the noncovalent interactions between them, are able to self-assemble into potential molecular abacuses. In all the cases investigated, the π-electron-deficient tetracationic cyclophane cyclobis(paraquat-p-phenylene) is constrained mechanically around a dumbbell-shaped component consisting of a linear polyether chain intercepted by at least two, if not three, π-electron-rich units and terminated at each end by blocking groups or stoppers. The development of an approach toward constructing these molecular abacuses, in which the tetracationic cyclophane is able to shuttle back and forth with respect to the dumbbell-shaped component, begins with the self-assembly of a [2]rotaxane consisting of two hydroquinone rings symmetrically positioned within a polyether chain terminated by triisopropylsilyl ether blocking groups. In this first so-called molecular shuttle, the tetracationic cyclophane oscillates in a degenerate fashion between the two π-electron-rich hydroquinone rings. Replacement of one of the hydroquinone rings—or the insertion of another π-electron-rich ring system between the two hydroquinine rings—introduces the possibility of translational isomerism, a phenomenon that arises because of the different relative positions and populations of the tetracationic cyclophane with respect to the π-donor sites on the dumbbell-shaped component. In two subsequent [2]rotaxanes, one of the hydroquinone rings in the dumbbell-shaped component is replaced, first by a p-xylyl and then by an indole unit. Finally, a tetrathiafulvalene (TTF) unit is positioned between two hydroquinone rings in the dumbbell-shaped component. Spectroscopic and electrochemical investigations carried out on these first-generation molecular shuttles show that they could be developed as molecular switches.

[1]  A. Harriman,et al.  Ultrafast photoinduced electron transfer between porphyrinic subunits within a bis(porphyrin)-stoppered rotaxane , 1993 .

[2]  K. Schaumburg,et al.  Synthesis and electrochemical properties of 1,4-dithiafulvenyl-substituted bianthrone molecules with potential application as molecular switches , 1993 .

[3]  M. Bryce,et al.  Synthesis of new multi-sulphur π-electron donors containing ketone functionality , 1991 .

[4]  H. Gibson,et al.  Synthesis and Preliminary Characterization of Some Polyester Rotaxanes , 1995 .

[5]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[6]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[7]  K E Drexler,et al.  Molecular nanomachines: physical principles and implementation strategies. , 1994, Annual review of biophysics and biomolecular structure.

[8]  G. Bidan,et al.  Electroactive films with a polyrotaxane organic backbone , 1996 .

[9]  Anthony Harriman,et al.  Photoactive [2]Rotaxanes: Structure and Photophysical Properties of Anthracene- and Ferrocene-Stoppered [2]Rotaxanes , 1995 .

[10]  F. Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[11]  B. Robinson Studies on the Fischer indole synthesis , 1969 .

[12]  Akira Harada,et al.  Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol) , 1994, Nature.

[13]  T Appenzeller,et al.  The man who dared to think small. , 1991, Science.

[14]  C. Dietrich-Buchecker,et al.  Multicomponent Molecular Systems Incorporating Porphyrins and Copper(I) Complexes: Simultaneous Synthesis of [3]‐ and [5]Rotaxanes , 1996 .

[15]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[16]  E. Hoyer,et al.  1.3-DITHIOL-2-THION-4.5-DITHIOLAT AUS SCHWEFELKOHLENSTOFF UND ALKALIMETALL , 1979 .

[17]  Anthony W. Czarnik,et al.  Real-Time Assay of Inorganic Pyrophosphatase Using a High-Affinity Chelation-Enhanced Fluorescence Chemosensor , 1994 .

[18]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[19]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[20]  R. A. Bissell,et al.  Synthesis and Electrochemical Properties of Redox-Active [2]Rotaxanes Based on the Inclusion Complexation of 1,4-Phenylenediamine and Benzidine by Cyclobis(paraquat-p-phenylene) , 1995 .

[21]  J. F. Stoddart,et al.  Self-assembly and macromolecular design , 1993 .

[22]  Tony D. James,et al.  Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine , 1995 .

[23]  H. Ringsdorf,et al.  Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes , 1988 .

[24]  N. Yang,et al.  Polarographic Oxidation Potentials of Aromatic Compounds , 1963 .

[25]  David J. Williams,et al.  Molecular Meccano. 4. The Self-Assembly of [2]Catenanes Incorporating Photoactive .pi.-Extended Systems , 1995 .

[26]  J Fraser Stoddart,et al.  A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donor-Acceptor Interactions. , 1996, Journal of the American Chemical Society.

[27]  G. Wenz,et al.  Threading Cyclodextrin Rings on Polymer Chains , 1992 .

[28]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[29]  P. Reider,et al.  Regioselective Fischer indole route to 3-unsubstituted indoles , 1991 .

[30]  J. Sauvage,et al.  Transition metal templated formation of [2]- and [3]-rotaxanes with porphyrins as stoppers , 1993 .

[31]  R. L. Myers,et al.  Determination of E20 - E10, for overlapping waves in stationary electrode polarography , 1969 .

[32]  T. Swager,et al.  CONDUCTING PSEUDOPOLYROTAXANES : A CHEMORESISTIVE RESPONSE VIA MOLECULAR RECOGNITION , 1994 .

[33]  C. Dietrich-Buchecker,et al.  Synthetic Molecular Knots , 1992 .

[34]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[35]  J. F. Stoddart,et al.  Towards Molecular and Supramolecular Devices , 1995 .

[36]  A. Krief Syntheses of tetraheterofulvalenes and of vinylene triheterocarbonates-strategy and practice , 1986 .

[37]  A. P. Silva,et al.  Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics , 1992 .

[38]  R. Chapman,et al.  Study of Templation and Molecular Encapsulation Using Highly Stable and Guest-Selective Self-Assembling Structures , 1995 .

[39]  David Bebbington,et al.  A Molecular Brake , 1994 .

[40]  F. Vögtle,et al.  A [3]Rotaxane of the Amide Type , 1996 .

[41]  Qin Zhou,et al.  Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers , 1995 .

[42]  David J. Williams,et al.  IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .

[43]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[44]  R. Taft,et al.  Regarding a generalized scale of solvent polarities , 1977 .

[45]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[46]  S. Hanessian,et al.  Molecular Recognition and Self-Assembly by Non-amidic Hydrogen Bonding. An Exceptional Assembler of Neutral and Charged Supramolecular Structures , 1995 .

[47]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[48]  David J. Williams,et al.  Self‐assembling [2]‐ and [3]Rotaxanes from Secondary Dialkylammonium Salts and Crown Ethers , 1996 .

[49]  David J. Williams,et al.  Simple Molecular Machines: Chemically Driven Unthreading and Rethreading of a [2]Pseudorotaxane , 1996 .

[50]  R. D. Gilbert,et al.  Arylazo dyes containing a built-in hindered-amine moiety , 1991 .

[51]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[52]  Wolter F. Jager,et al.  Organic Materials for Reversible Optical Data Storage , 1993 .

[53]  D. Richardson,et al.  Determination of E20-E10 in multistep charge transfer by stationary-electrode pulse and cyclic voltammetry: application to binuclear ruthenium ammines , 1981 .

[54]  Andrew J. P. White,et al.  The solid state structures of a [3]rotaxane and its [3]pseudorotaxane precursor , 1996 .

[55]  M. Nishio,et al.  The CH/π interaction: Significance in molecular recognition , 1995 .

[56]  E. W. Meijer,et al.  CHIROPTICAL MOLECULAR SWITCH , 1991 .

[57]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[58]  David J. Williams,et al.  The template-directed synthesis of a [2]rotaxane , 1991 .

[59]  F. Wudl,et al.  Convenient synthesis of 1,4,5,8-tetrahydro-1,4,5,8-tetrathiafulvalene , 1974 .

[60]  F. L. Carter Molecular Electronic Devices II , 1987 .

[61]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[62]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[63]  F. Kummerow,et al.  Notes- An Improved Procedure for Preparing Glycerol Ethers , 1959 .

[64]  Jean-Pierre Sauvage,et al.  Interlacing molecular threads on transition metals: catenands, catenates, and knots , 1990 .

[65]  R. Taft,et al.  The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities , 1977 .

[66]  Zhan-Ting Li,et al.  Self‐assembling Tetrathiafulvalene‐based Rotaxanes and Catenanes , 1996 .

[67]  A. Kaifer,et al.  Solvent effects on the binding equilibria between the guests indole and catechol and the host cyclobis(paraquat-p-phenylene) , 1995 .

[68]  Zhan-Ting Li,et al.  Synthesis of Novel Tetrathiafulvalene‐Based [3]Pseudocatenanes by Self‐Assembly; Prevention of trans/cis Isomerization , 1995 .

[69]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[70]  H. Gibson,et al.  Synthesis of a rotaxane via the template method , 1991 .

[71]  J. F. Stoddart,et al.  CYCLOBIS(PARAQUAT-P-PHENYLENE) : A NOVEL SYNTHETIC RECEPTOR FOR AMINO ACIDS WITH ELECTRON-RICH AROMATIC MOIETIES , 1991 .

[72]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[73]  H. Ritter,et al.  Side‐Chain Polyrotaxanes with a Tandem Structure Based on Cyclodextrins and a Polymethacrylate Main Chain , 1995 .

[74]  A. Harada,et al.  PREPARATION AND CHARACTERIZATION OF A POLYROTAXANE CONSISTING OF MONODISPERSE POLY(ETHYLENE GLYCOL) AND ALPHA -CYCLODEXTRINS , 1994 .

[75]  H. Ringsdorf,et al.  Attempts to mimic docking processes of the immune system: recognition-induced formation of protein multilayers. , 1993, Science.

[76]  K. Osakada,et al.  Polyrotaxane Containing a Blocking Group in Every Structural Unit of the Polymer Chain. Direct Synthesis of Poly(alkylenebenzimidazole) Rotaxane from Ru Complex-Catalyzed Reaction of 1,12-Dodecanediol and 3,3‘-Diaminobenzidine in the Presence of Cyclodextrin , 1996 .

[77]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[78]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[79]  J. F. Stoddart,et al.  Molecular and Supramolecular Self-Assembly Processes , 1993 .

[80]  G. Gokel,et al.  Ferrocenyl iron as a donor group for complexed silver in ferrocenyldimethyl[2.2]cryptand: A redox-switched receptor effective in water , 1992 .

[81]  Christopher L. Brown,et al.  Molecular Meccano. 2. Self-Assembly of [n]Catenanes , 1995 .

[82]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[83]  David J. Williams,et al.  Controlling Translational Isomerism in [2]Catenanes† , 1995 .

[84]  J. F. Stoddart,et al.  The Slipping Approach to Self-Assembling [n]Rotaxanes† , 1997 .