Theoretical study of the reactivity of Rh(I) and Rh(III) Bis(isonitrile) complexes in cycloaddition reactions with nitrones

[1]  A. Novikov,et al.  Theoretical study of Rh(I) and Rh(III) bis(isonitrile) complexes as promising reagents for synthesis of N-heterocyclic carbenes , 2012, Russian Journal of Inorganic Chemistry.

[2]  M. L. Kuznetsov,et al.  Theoretical study of Re(IV) and Ru(II) bis-isocyanide complexes and their reactivity in cycloaddition reactions with nitrones , 2012 .

[3]  N. Bokach Cycloaddition of nitrones to metal-activated nitriles and isocyanides , 2010 .

[4]  A. Pombeiro,et al.  Comparative theoretical study of 1,3-dipolar cycloadditions of allyl-anion type dipoles to free and Pt-bound nitriles. , 2010, The Journal of organic chemistry.

[5]  A. Pombeiro,et al.  Isocyanide Complexes with Platinum and Palladium and Their Reactivity toward Cycloadditions with Nitrones to Form Aminooxycarbenes: A Theoretical Study , 2009 .

[6]  A. Pombeiro,et al.  Metal-mediated [2+3] cycloaddition of nitrones to palladium-bound isonitriles. , 2009, Chemistry.

[7]  M. Haukka,et al.  Platinum(II)-Complexed Tetrahydroimidazo[1,2-b][1,2,4]oxadiazoles Derived from Metal-Mediated 1,3-Dipolar Cycloaddition. Novel Type of Heterocycles, Which Do Not Exist without the Metal Center , 2009 .

[8]  Benjamin D. Ward,et al.  Selected recent developments in organo-cobalt chemistry , 2008 .

[9]  Kevin D. Haenni,et al.  Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. , 2007, Journal of the American Chemical Society.

[10]  M. L. Kuznetsov,et al.  Theoretical study of chemo-, regio-, and stereoselectivity in 1,3-dipolar cycloadditions of nitrones and nitrile oxides to free and Pt-bound bifunctional dipolarophiles. , 2007, The Journal of organic chemistry.

[11]  R. Takeuchi,et al.  Iridium Complex-Catalyzed [2+2+2] Cycloaddition of α,ω-Diynes with Monoynes and Monoenes , 2006 .

[12]  M. L. Kuznetsov,et al.  Theoretical study of reactant activation in 1,3-dipolar cycloadditions of cyclic nitrones to free and Pt-bound nitriles. , 2006, The Journal of organic chemistry.

[13]  V. Kukushkin,et al.  Addition of HO-nucleophiles to free and coordinated nitriles , 2005 .

[14]  A. Pombeiro,et al.  1,3-Dipolar cycloaddition of nitrones to free and Pt-bound nitriles. A theoretical study of the activation effect, reactivity, and mechanism , 2003 .

[15]  Jesús A. Varela,et al.  Construction of pyridine rings by metal-mediated [2 + 2 + 2] cycloaddition. , 2003, Chemical reviews.

[16]  A. Terraneo,et al.  Transition Metal Complexation in 1,3-Dipolar Cycloadditions , 2003 .

[17]  Karl Anker Jørgensen,et al.  Cycloaddition reactions in organic synthesis , 2001 .

[18]  A. Pombeiro,et al.  [2 + 3] cycloaddition of nitrones to platinum-bound organonitriles: effect of metal oxidation state and of nitrile substituent. , 2001, Inorganic chemistry.

[19]  G. Wagner,et al.  Platinum(IV)-Assisted [2 + 3] Cycloaddition of Nitrones to Coordinated Organonitriles. Synthesis of Δ4-1,2,4-Oxadiazolines , 2000 .

[20]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[21]  P. Schleyer,et al.  In-Plane Aromaticity in 1,3-Dipolar Cycloadditions. Solvent Effects, Selectivity, and Nucleus-Independent Chemical Shifts , 1999 .

[22]  K. Gothelf,et al.  Asymmetric 1,3-Dipolar Cycloaddition Reactions. , 1998, Chemical reviews.

[23]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[24]  Iñaki Morao,et al.  In-Plane Aromaticity in 1,3-Dipolar Cycloadditions , 1997 .

[25]  M. Frederickson Optically Active Isoxazolidines via Asymmetric Cycloaddition Reactions of Nitrones with Alkenes: Applications in Organic Synthesis , 1997 .

[26]  M. Lautens,et al.  Transition Metal-Mediated Cycloaddition Reactions. , 1996, Chemical reviews.

[27]  Gernot Frenking,et al.  Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .

[28]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[29]  J. M. Ugalde,et al.  Catalytic and Solvent Effects on the Cycloaddition Reaction between Ketenes and Carbonyl Compounds To Form 2-Oxetanones , 1994 .

[30]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[31]  H. Bernhard Schlegel,et al.  Improved algorithms for reaction path following: Higher‐order implicit algorithms , 1991 .

[32]  Albert Moyano,et al.  A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.beta.-lactones) , 1989 .

[33]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[34]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[35]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[36]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[37]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[38]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[39]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[40]  M. L. Kuznetsov,et al.  Theoretical studies of transition metal complexes with nitriles and isocyanides , 2002 .

[41]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .