Nonorientable genus of cartesian products of regular graphs
暂无分享,去创建一个
[1] Jonathan L. Gross,et al. Generating all graph coverings by permutation voltage assignments , 1977, Discret. Math..
[2] Jonathan L. Gross,et al. Quotients of complete graphs: revisiting the Heawood map-coloring problem. , 1974 .
[3] Tomaz Pisanski,et al. Dual imbeddings and wrapped quasi-coverings of graphs , 1980, Discret. Math..
[4] Saul Stahl,et al. Generalized Embedding Schemes , 1978, J. Graph Theory.
[5] Saul Stahl,et al. The embeddings of a graph - A survey , 1978, J. Graph Theory.
[6] Anton Kotzig,et al. 1-Factorizations of cartesian products of regular graphs , 1979, J. Graph Theory.
[7] Tomaž Pisanski. Genus of cartesian products of regular bipartite graphs , 1980, J. Graph Theory.
[8] Tomaz Pisanski,et al. Edge-coloring of a family of regular graphs. , 1983 .
[9] J. Gross,et al. The topological theory of current graphs , 1974 .
[10] Mark Jungerman. The non-orientable genus of the $n$-cube. , 1978 .
[11] Jonathan L. Gross,et al. Voltage graphs , 1974, Discret. Math..
[12] Gerhard Ringel,et al. The combinatorial map color theorem , 1977, J. Graph Theory.
[13] G. Ringel. Über drei kombinatorische Probleme amn-dimensionalen Würfel und Würfelgitter , 1955 .
[14] A. White. On the genus of a group , 1972 .
[15] Arthur T. White,et al. ON THE GENUS OF THE COMPOSITION OF TWO GRAPHS , 1972 .
[16] Saul Stahl,et al. Genus embeddings for some complete tripartite graphs , 1976, Discret. Math..
[17] Renu C. Laskar,et al. Chromatic Numbers for Certain Graphs , 1972 .
[18] G. Prins,et al. Every generalized Petersen graph has a Tait coloring. , 1972 .