Convex relaxations of SE(2) and SE(3) for visual pose estimation

This paper proposes a new method for rigid body pose estimation based on spectrahedral representations of the tautological orbitopes of SE(2) and SE(3). The approach can use dense point cloud data from stereo vision or an RGB-D sensor (such as the Microsoft Kinect), as well as visual appearance data as input. The method is a convex relaxation of the classical pose estimation problem, and is based on explicit linear matrix inequality (LMI) representations for the convex hulls of SE(2) and SE(3). Given these representations, the relaxed pose estimation problem can be framed as a robust least squares problem with the optimization variable constrained to these convex sets. Although this formulation is a relaxation of the original problem, numerical experiments indicates that it is indeed exact - i.e. its solution is a member of SE(2) or SE(3) - in many interesting settings. We additionally show that this method is guaranteed to be exact for a large class of pose estimation problems.

[1]  Grigoriy Blekherman,et al.  Convex geometry of orbits. , 2003, math/0312268.

[2]  Dieter Fox,et al.  Manipulator and object tracking for in-hand 3D object modeling , 2011, Int. J. Robotics Res..

[3]  Geoffrey A. Hollinger,et al.  HERB: a home exploring robotic butler , 2010, Auton. Robots.

[4]  Shmuel Onn,et al.  Geometry, Complexity, and Combinatorics of Permutation Polytopes , 1993, J. Comb. Theory A.

[5]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[6]  Stergios I. Roumeliotis,et al.  SC-KF Mobile Robot Localization: A Stochastic Cloning Kalman Filter for Processing Relative-State Measurements , 2007, IEEE Transactions on Robotics.

[7]  Joel W. Burdick,et al.  A probabilistic framework for object search with 6-DOF pose estimation , 2011, Int. J. Robotics Res..

[8]  D. Avis,et al.  On the relationship between convex bodies related to correlation experiments with dichotomic observables , 2006, quant-ph/0605148.

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Frank Sottile,et al.  Convex Hulls of Orbits and Orientations of a Moving Protein Domain , 2007, Discret. Comput. Geom..

[13]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[14]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[15]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[16]  N. Zobin,et al.  CONVEX GEOMETRY OF COXETER-INVARIANT POLYHEDRA , 2003 .

[17]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[18]  Joel W. Burdick,et al.  Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  D. Fox,et al.  Manipulator and Object Tracking for In Hand Model Acquisition , 2010 .

[20]  Siddhartha S. Srinivasa,et al.  MOPED: A scalable and low latency object recognition and pose estimation system , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[22]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[23]  Larry H. Matthies,et al.  Model-based autonomous system for performing dexterous, human-level manipulation tasks , 2014, Auton. Robots.

[24]  Joel W. Burdick,et al.  A Decision-Making Framework for Control Strategies in Probabilistic Search , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[27]  Larry H. Matthies,et al.  End-to-end dexterous manipulation with deliberate interactive estimation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[28]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007, J. Mach. Learn. Res..

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[30]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[31]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[32]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[33]  Vijay R. Kumar,et al.  Euclidean metrics for motion generation on SE(3) , 2002 .