Horizontal gene transfer among host-associated microbes.

[1]  J. Hall,et al.  How do interactions between mobile genetic elements affect horizontal gene transfer? , 2023, Current opinion in microbiology.

[2]  M. Yassour,et al.  Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism , 2022, Cell.

[3]  Charles Coluzzi,et al.  Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation , 2022, Nucleic acids research.

[4]  C. Knight,et al.  Horizontal gene transfer and ecological interactions jointly control microbiome stability , 2022, PLoS biology.

[5]  A. Lopatkin,et al.  Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment , 2022, The ISME journal.

[6]  T. Bollenbach,et al.  Distribution of fitness effects of cross-species transformation reveals potential for fast adaptive evolution , 2022, The ISME journal.

[7]  M. Petit,et al.  Signals triggering prophage induction in the gut microbiota , 2022, Molecular microbiology.

[8]  M. Lässig,et al.  Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations , 2022, Nature Communications.

[9]  E. Rocha,et al.  Identification and characterization of thousands of bacteriophage satellites across bacteria , 2022, bioRxiv.

[10]  E. Rocha,et al.  A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature , 2022, bioRxiv.

[11]  G. Douce,et al.  Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors , 2022, Cell.

[12]  C. Hill,et al.  Viral biogeography of the mammalian gut and parenchymal organs , 2022, Nature Microbiology.

[13]  Noah W. Palm,et al.  Within-host evolution of a gut pathobiont facilitates liver translocation , 2022, Nature.

[14]  E. Rocha,et al.  Phage-Plasmids Spread Antibiotic Resistance Genes through Infection and Lysogenic Conversion , 2022, bioRxiv.

[15]  K. Foster,et al.  Host control and the evolution of cooperation in host microbiomes , 2022, Nature Communications.

[16]  D. Bikard,et al.  Within-patient evolution of plasmid-mediated antimicrobial resistance , 2022, bioRxiv.

[17]  E. Rocha,et al.  Evolution of Plasmid Mobility: Origin and Fate of Conjugative and Nonconjugative Plasmids , 2022, Molecular biology and evolution.

[18]  J. Coppee,et al.  The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. , 2022, Cell host & microbe.

[19]  E. Rocha,et al.  Phages and their satellites encode hotspots of antiviral systems , 2022, Cell host & microbe.

[20]  M. Baym,et al.  The bacterial toxin colibactin triggers prophage induction , 2022, Nature.

[21]  E. Rocha,et al.  Microbial defenses against mobile genetic elements and viruses: Who defends whom from what? , 2022, PLoS biology.

[22]  M. Touchon,et al.  Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations , 2021, Philosophical Transactions of the Royal Society B.

[23]  B. Koskella,et al.  Multiyear Time-Shift Study of Bacteria and Phage Dynamics in the Phyllosphere , 2021, The American Naturalist.

[24]  M. Touchon,et al.  Systematic and quantitative view of the antiviral arsenal of prokaryotes , 2021, Nature Communications.

[25]  Kathryn M. Kauffman,et al.  Resolving the structure of phage–bacteria interactions in the context of natural diversity , 2021, Nature Communications.

[26]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[27]  J. Estellé,et al.  Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes , 2021, ISME Communications.

[28]  C. Ubeda,et al.  Staphylococcal phages and pathogenicity islands drive plasmid evolution , 2021, Nature Communications.

[29]  A. Marina,et al.  A regulatory cascade controls Staphylococcus aureus pathogenicity island activation , 2021, Nature Microbiology.

[30]  A. Marina,et al.  The arbitrium system controls prophage induction , 2021, Current Biology.

[31]  J. Ayroles,et al.  The microbiome extends host evolutionary potential , 2021, Nature Communications.

[32]  L. Altucci,et al.  Outer Membrane Vesicles Derived from Klebsiella pneumoniae Are a Driving Force for Horizontal Gene Transfer , 2021, bioRxiv.

[33]  K. Seed,et al.  Phage satellites and their emerging applications in biotechnology. , 2021, FEMS microbiology reviews.

[34]  Peter C. Fineran,et al.  CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids , 2021, bioRxiv.

[35]  Tami D. Lieberman,et al.  Anatomy promotes neutral coexistence of strains in the human skin microbiome , 2021, bioRxiv.

[36]  R. Cantón,et al.  Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities , 2021, Nature Communications.

[37]  C. Gätgens,et al.  Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle , 2021, bioRxiv.

[38]  I. Brito Examining horizontal gene transfer in microbial communities , 2021, Nature Reviews Microbiology.

[39]  A. Wood,et al.  Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation , 2021, bioRxiv.

[40]  E. Rocha,et al.  To catch a hijacker: abundance, evolution and genetic diversity of P4-like bacteriophage satellites , 2021, bioRxiv.

[41]  Ayal B. Gussow,et al.  Thousands of previously unknown phages discovered in whole-community human gut metagenomes , 2021, Microbiome.

[42]  Sean M. Kearney,et al.  Elevated rates of horizontal gene transfer in the industrialized human microbiome , 2021, Cell.

[43]  Alexander P Hynes,et al.  Common Oral Medications Lead to Prophage Induction in Bacterial Isolates from the Human Gut , 2021, Viruses.

[44]  A. Thierry,et al.  MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut , 2021, eLife.

[45]  M. Touchon,et al.  Bacteria have numerous distinctive groups of phage–plasmids with conserved phage and variable plasmid gene repertoires , 2021, Nucleic acids research.

[46]  Zhigang Yu,et al.  Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer , 2021, The ISME Journal.

[47]  Munirul Alam,et al.  Temporal Shifts in Antibiotic Resistance Elements Govern Virus-Pathogen Conflicts , 2020, bioRxiv.

[48]  T. Kwok,et al.  Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation , 2020, Proceedings of the National Academy of Sciences.

[49]  Frédéric Grenier,et al.  Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114 , 2020, Communications Biology.

[50]  G. Nair,et al.  Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae , 2020, Proceedings of the National Academy of Sciences.

[51]  B. Stecher,et al.  The Spatial Heterogeneity of the Gut Limits Predation and Fosters Coexistence of Bacteria and Bacteriophages. , 2020, Cell host & microbe.

[52]  Zhiguo Yuan,et al.  Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation , 2020, The ISME Journal.

[53]  I. Brito,et al.  Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C , 2020, Nature Communications.

[54]  I. Gordo,et al.  Low mutational load and high mutation rate variation in gut commensal bacteria , 2020, PLoS biology.

[55]  M. Touchon,et al.  Phylogenetic background and habitat drive the genetic diversification of Escherichia coli , 2020, bioRxiv.

[56]  M. Wannemuehler,et al.  Mouse Genetic Background Affects Transfer of an Antibiotic Resistance Plasmid in the Gastrointestinal Tract , 2020, mSphere.

[57]  T. Barraclough,et al.  The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. , 2020, Plasmid.

[58]  Christian Munck,et al.  Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform , 2020, Nature Communications.

[59]  D. Wigley,et al.  A conformational switch in response to Chi converts RecBCD from phage destruction to DNA repair , 2019, Nature structural & molecular biology.

[60]  M. Lipsitch,et al.  Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae , 2019, Science Advances.

[61]  M. Gut,et al.  Tracking of Antibiotic Resistance Transfer and Rapid Plasmid Evolution in a Hospital Setting by Nanopore Sequencing , 2019, mSphere.

[62]  E. Rocha,et al.  Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation , 2019, bioRxiv.

[63]  R. Xavier,et al.  Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools , 2019, PloS one.

[64]  J. Walter,et al.  Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem , 2019, Applied and Environmental Microbiology.

[65]  T. Sutton,et al.  The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. , 2019, Cell host & microbe.

[66]  G. Douglas,et al.  Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes , 2019, Genome biology and evolution.

[67]  M. Lässig,et al.  Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut , 2019, Proceedings of the National Academy of Sciences.

[68]  J. Penadés,et al.  Genetic transduction by phages and chromosomal islands: The new and noncanonical , 2019, PLoS pathogens.

[69]  K. Foster,et al.  Bacteriophages benefit from generalized transduction , 2019, PLoS pathogens.

[70]  X. Charpentier,et al.  Diverse conjugative elements silence natural transformation in Legionella species , 2019, Proceedings of the National Academy of Sciences.

[71]  Lorena Rodríguez-Rubio,et al.  Faecal phageome of healthy individuals: presence of antibiotic resistance genes and variations caused by ciprofloxacin treatment , 2019, The Journal of antimicrobial chemotherapy.

[72]  E. Rocha,et al.  1 Supplementary Information for : Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation , 2018 .

[73]  J. Walter,et al.  Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri. , 2019, Cell host & microbe.

[74]  G. Balázsi,et al.  Optimality of the spontaneous prophage induction rate , 2019, bioRxiv.

[75]  Ying Zhang,et al.  Evolution of the Natural Transformation Protein, ComEC, in Bacteria , 2018, Front. Microbiol..

[76]  Á. San Millán Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. , 2018, Trends in microbiology.

[77]  Nuria Quiles-Puchalt,et al.  Genome hypermobility by lateral transduction , 2018, Science.

[78]  K. Foster,et al.  Why does the microbiome affect behaviour? , 2018, Nature Reviews Microbiology.

[79]  C. Pál,et al.  Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota , 2018, Nature Microbiology.

[80]  Kathryn M. Kauffman,et al.  Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities , 2018, Scientific Reports.

[81]  Brian Bushnell,et al.  Murine colitis reveals a disease-associated bacteriophage community , 2018, Nature Microbiology.

[82]  J. Penadés,et al.  Phage-inducible chromosomal islands are ubiquitous within the bacterial universe , 2018, The ISME Journal.

[83]  J. Bae,et al.  Lysogeny is prevalent and widely distributed in the murine gut microbiota , 2018, The ISME Journal.

[84]  L. Eberl,et al.  Types and origins of bacterial membrane vesicles , 2018, Nature Reviews Microbiology.

[85]  Varun Khanna,et al.  The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. , 2017, Cell host & microbe.

[86]  Hannah R. Meredith,et al.  Persistence and reversal of plasmid-mediated antibiotic resistance , 2017, Nature Communications.

[87]  N. Leblond-Bourget,et al.  The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems , 2017, Genes.

[88]  Arne Traulsen,et al.  Temperate phages as self-replicating weapons in bacterial competition , 2017, bioRxiv.

[89]  Brendan J. O’Hara,et al.  A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome , 2017, PLoS genetics.

[90]  A. Aertsen,et al.  Inflammation boosts bacteriophage transfer between Salmonella spp. , 2017, Science.

[91]  Rotem Sorek,et al.  Communication between viruses guides lysis-lysogeny decisions , 2016, Nature.

[92]  H. Ingmer,et al.  Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells , 2016, Nature Communications.

[93]  Benjamin Bolduc,et al.  Healthy human gut phageome , 2016, Proceedings of the National Academy of Sciences.

[94]  I. Kukavica-Ibrulj,et al.  Temperate phages enhance pathogen fitness in chronic lung infection , 2016, The ISME Journal.

[95]  David K. Karig,et al.  Antibiotics as a selective driver for conjugation dynamics , 2016, Nature Microbiology.

[96]  M. Touchon,et al.  Genetic and life-history traits associated with the distribution of prophages in bacteria , 2016, The ISME Journal.

[97]  Dominic Sauvageau,et al.  Host receptors for bacteriophage adsorption. , 2016, FEMS microbiology letters.

[98]  L. Tournier,et al.  Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine , 2016, PLoS genetics.

[99]  J. Penadés,et al.  The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. , 2015, Annual review of virology.

[100]  R. Stepanauskas,et al.  Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population , 2015, Front. Microbiol..

[101]  Stuart Brown,et al.  Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. , 2015, Molecular cell.

[102]  M. Touchon,et al.  The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts , 2014, Nucleic acids research.

[103]  P. Srivastava,et al.  Broad host range plasmids. , 2013, FEMS microbiology letters.

[104]  J. Mell,et al.  The availability of purine nucleotides regulates natural competence by controlling translation of the competence activator Sxy , 2013, Molecular microbiology.

[105]  J. Claverys,et al.  Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS? , 2012, Current opinion in microbiology.

[106]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[107]  Wolf-Dietrich Hardt,et al.  Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae , 2012, Proceedings of the National Academy of Sciences.

[108]  Bernard Martin,et al.  Induction of competence regulons as a general response to stress in gram-positive bacteria. , 2006, Annual review of microbiology.

[109]  J. Claverys,et al.  Antibiotic Stress Induces Genetic Transformability in the Human Pathogen Streptococcus pneumoniae , 2006, Science.

[110]  J. P. Dillard,et al.  Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination , 2006, Molecular microbiology.

[111]  M. Yokoyama,et al.  Naturally Occurring DNA Transfer System Associated with Membrane Vesicles in Cellulolytic Ruminococcus spp. of Ruminal Origin , 2005, Applied and Environmental Microbiology.

[112]  H. Schmieger Phage P22-mutants with increased or decreased transduction abilities , 2004, Molecular and General Genetics MGG.

[113]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[114]  J. Ghigo Natural conjugative plasmids induce bacterial biofilm development , 2001, Nature.

[115]  F. Taddei,et al.  Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[116]  A. Dean,et al.  The evolution of bacterial transformation: sex with poor relations. , 1997, Genetics.

[117]  B. Lindqvist,et al.  Mechanisms of genome propagation and helper exploitation by satellite phage P4 , 1993 .

[118]  F. Barany,et al.  Comparison of transformation mechanisms of Haemophilus parainfluenzae and Haemophilus influenzae , 1985, Journal of bacteriology.

[119]  R. Freter,et al.  Survival and Implantation of Escherichia coli in the Intestinal Tract , 1983, Infection and immunity.

[120]  J. Pittard,et al.  Chromosome Transfer in Bacterial Conjugation , 1965 .