Multilocus DNA barcoding – Species Identification with Multilocus Data

Species identification using DNA sequences, known as DNA barcoding has been widely used in many applied fields. Current barcoding methods are usually based on a single mitochondrial locus, such as cytochrome c oxidase subunit I (COI). This type of barcoding method does not always work when applied to species separated by short divergence times or that contain introgressed genes from closely related species. Herein we introduce a more effective multi-locus barcoding framework that is based on gene capture and “next-generation” sequencing. We selected 500 independent nuclear markers for ray-finned fishes and designed a three-step pipeline for multilocus DNA barcoding. We applied our method on two exemplar datasets each containing a pair of sister fish species: Siniperca chuatsi vs. Sini. kneri and Sicydium altum vs. Sicy. adelum, where the COI barcoding approach failed. Both of our empirical and simulated results demonstrated that under limited gene flow and enough separation time, we could correctly identify species using multilocus barcoding method. We anticipate that, as the cost of DNA sequencing continues to fall that our multilocus barcoding approach will eclipse existing single-locus DNA barcoding methods as a means to better understand the diversity of the living world.

[1]  M. Smulders,et al.  Efficient distinction of invasive aquatic plant species from non‐invasive related species using DNA barcoding , 2013, Molecular ecology resources.

[2]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[3]  Chenhong Li,et al.  Gene markers for exon capture and phylogenomics in ray‐finned fishes , 2019, Ecology and evolution.

[4]  R. Meier,et al.  Barcoding and Border Biosecurity: Identifying Cyprinid Fishes in the Aquarium Trade , 2012, PloS one.

[5]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[6]  A. Widmer,et al.  DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species , 2016, PloS one.

[7]  Chenhong Li,et al.  Species delimitation and phylogenetic reconstruction of the sinipercids (Perciformes: Sinipercidae) based on target enrichment of thousands of nuclear coding sequences. , 2017, Molecular phylogenetics and evolution.

[8]  Pierre Taberlet,et al.  From barcodes to genomes: extending the concept of DNA barcoding , 2016, Molecular ecology.

[9]  Vladimir N. Minin,et al.  Species Delimitation using Genome-Wide SNP Data , 2013, bioRxiv.

[10]  Chenhong Li,et al.  Target gene enrichment in the cyclophyllidean cestodes, the most diverse group of tapeworms , 2016, Molecular ecology resources.

[11]  K. Van Doninck,et al.  Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia) , 2013, ZooKeys.

[12]  G. Saunders Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia , 2009, Molecular ecology resources.

[13]  P. Hebert,et al.  DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  Dan Liang,et al.  Multiple genome alignments facilitate development of NPCL markers: a case study of tetrapod phylogeny focusing on the position of turtles. , 2011, Molecular biology and evolution.

[15]  I. Theilade,et al.  The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.) , 2015, PloS one.

[16]  R. Ward,et al.  DNA barcoding Australia's fish species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Sudarto,et al.  Cryptic Diversity in Indo-Australian Rainbowfishes Revealed by DNA Barcoding: Implications for Conservation in a Biodiversity Hotspot Candidate , 2012, PloS one.

[18]  Xiuyue Zhang,et al.  DNA barcoding of Murinae (Rodentia: Muridae) and Arvicolinae (Rodentia: Cricetidae) distributed in China , 2015, Molecular ecology resources.

[19]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[20]  B. Rannala,et al.  Bayesian species delimitation using multilocus sequence data , 2010, Proceedings of the National Academy of Sciences.

[21]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[22]  Yang QingCAI De-lin Zhou Cai-wu On the Classification and Distribution of the Sinipercinae Fishes (Family serranidae) , 1988 .

[23]  J. Good,et al.  Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales , 2012, BMC Genomics.

[24]  P. Hebert,et al.  DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation , 2006, Molecular ecology.

[25]  A. Lambert,et al.  ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.

[26]  Gene markers for exon capture and phylogenomics in ray-finned fishes , 2017, bioRxiv.

[27]  M. Hofreiter,et al.  Capturing protein-coding genes across highly divergent species. , 2013, BioTechniques.

[28]  Gaurav Vaidya,et al.  DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.

[29]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[30]  M. Kuntner,et al.  DNA barcoding gap: reliable species identification over morphological and geographical scales , 2015, Molecular ecology resources.

[31]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[32]  Bridgett M. vonHoldt,et al.  STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method , 2011, Conservation Genetics Resources.

[33]  Sudhir Kumar,et al.  Mutation rates in mammalian genomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Bonnie B. Blaimer,et al.  Sequence Capture and Phylogenetic Utility of Genomic Ultraconserved Elements Obtained from Pinned Insect Specimens , 2016, PloS one.

[35]  D. Hillis,et al.  Targeted Enrichment: Maximizing Orthologous Gene Comparisons across Deep Evolutionary Time , 2013, PloS one.

[36]  Giovanni Felici,et al.  DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods , 2012, PloS one.

[37]  V. Nijman,et al.  DNA barcoding of Dutch birds , 2013, ZooKeys.

[38]  Shilin Chen,et al.  Plant DNA barcoding: from gene to genome , 2015, Biological reviews of the Cambridge Philosophical Society.

[39]  Roger Nilsen,et al.  An Exon-Capture System for the Entire Class Ophiuroidea , 2015, bioRxiv.

[40]  M. Dowton,et al.  A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. , 2014, Systematic biology.

[41]  Chenhong Li,et al.  Mitochondrial diversity and phylogeography of the Chinese perch, Siniperca chuatsi (Perciformes: Sinipercidae). , 2008, Molecular phylogenetics and evolution.

[42]  S. Boyer,et al.  Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding , 2012, Molecular ecology resources.

[43]  L. Excoffier,et al.  Robust Demographic Inference from Genomic and SNP Data , 2013, PLoS genetics.

[44]  Scott V Edwards,et al.  Divergence Across Australia's Carpentarian Barrier: Statistical Phylogeography of the Red-Backed Fairy Wren (Malurus melanocephalus) , 2008, Evolution; international journal of organic evolution.

[45]  Chenhong Li,et al.  EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies , 2012, Molecular ecology resources.

[46]  L. Ng,et al.  DNA barcoding: complementing morphological identification of mosquito species in Singapore , 2014, Parasites & Vectors.

[47]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[48]  R. Hanner,et al.  DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters , 2011, PloS one.

[49]  J. Hey Isolation with migration models for more than two populations. , 2010, Molecular biology and evolution.

[50]  Gontran Sonet,et al.  Adhoc: an R package to calculate ad hoc distance thresholds for DNA barcoding identification , 2013, ZooKeys.

[51]  Travis C. Glenn,et al.  A Phylogeny of Birds Based on Over 1,500 Loci Collected by Target Enrichment and High-Throughput Sequencing , 2012, PloS one.

[52]  S. Krauss,et al.  DNA barcoding for conservation, seed banking and ecological restoration of Acacia in the Midwest of Western Australia , 2013, Molecular ecology resources.

[53]  J. Snoeks,et al.  Taxonomic challenges in freshwater fishes: a mismatch between morphology and DNA barcoding in fish of the north‐eastern part of the Congo basin , 2016, Molecular ecology resources.

[54]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[55]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[56]  W. Nentwig,et al.  Combining morphology, DNA sequences, and morphometrics: revising closely related species in the orb-weaving spider genus Araniella (Araneae, Araneidae). , 2016, Zootaxa.

[57]  W. Bussing Sicydium adelum, a new species of gobiid fish (Pisces: Gobiidae) from Atlantic slope streams of Costa Rica , 2015 .

[58]  M. Vences,et al.  Deciphering amphibian diversity through DNA barcoding: chances and challenges , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  F. Glaw,et al.  Comprehensive DNA barcoding of the herpetofauna of Germany , 2016, Molecular ecology resources.

[60]  Laurent Excoffier,et al.  Fastsimcoal: a Continuous-time Coalescent Simulator of Genomic Diversity under Arbitrarily Complex Evolutionary Scenarios , 2011, Bioinform..

[61]  David L. Erickson,et al.  Mapping Biodiversity and Setting Conservation Priorities for SE Queensland’s Rainforests Using DNA Barcoding , 2013, PloS one.

[62]  H. Ross The incidence of species-level paraphyly in animals: a re-assessment. , 2014, Molecular phylogenetics and evolution.

[63]  M. Reemer,et al.  Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae) , 2016, BMC Evolutionary Biology.

[64]  T. Backeljau,et al.  Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case , 2012, PloS one.

[65]  R. Cruickshank,et al.  Known knowns, known unknowns, unknown unknowns and unknown knowns in DNA barcoding: a comment on Dowton et al. , 2014, Systematic biology.

[66]  A. Liston,et al.  Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae) , 2016, Molecular ecology resources.

[67]  René Tänzler,et al.  DNA Barcoding for Community Ecology - How to Tackle a Hyperdiverse, Mostly Undescribed Melanesian Fauna , 2012, PloS one.

[68]  M. Ito,et al.  Recent discoveries of armyworms in Japan and their species identification using DNA barcoding , 2011, Molecular ecology resources.

[69]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[71]  Tandy Warnow,et al.  Evaluating Summary Methods for Multilocus Species Tree Estimation in the Presence of Incomplete Lineage Sorting. , 2016, Systematic biology.

[72]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.