EEG-based mild depressive detection using feature selection methods and classifiers

[1]  Charalampos Bratsas,et al.  Geriatric depression symptoms coexisting with cognitive decline: A comparison of classification methodologies , 2016, Biomed. Signal Process. Control..

[2]  Sümeyra Agambayev,et al.  Nonlinear analysis of EEGs of patients with major depression during different emotional states , 2015, Comput. Biol. Medicine.

[3]  H. Aizenstein,et al.  Studying depression using imaging and machine learning methods , 2015, NeuroImage: Clinical.

[4]  Dipti Patil,et al.  Non invasive EEG signal processing framework for real time depression analysis , 2015, 2015 SAI Intelligent Systems Conference (IntelliSys).

[5]  Serhat Ozekes,et al.  Feature Selection and Classification of Electroencephalographic Signals , 2015, Clinical EEG and neuroscience.

[6]  P. C. Koo,et al.  P124. QEEG and CSD power analysis in depression , 2015, Clinical Neurophysiology.

[7]  Bin Hu,et al.  A study on EEG-based brain electrical source of mild depressed subjects , 2015, Comput. Methods Programs Biomed..

[8]  Xiaoli Li,et al.  EEG entropy measures in anesthesia , 2015, Front. Comput. Neurosci..

[9]  K. Oppong Asante,et al.  Prevalence and determinants of depressive symptoms among university students in Ghana. , 2015, Journal of affective disorders.

[10]  K. Peltzer,et al.  Depression among university students in Kenya: prevalence and sociodemographic correlates. , 2014, Journal of affective disorders.

[11]  Bao-Liang Lu,et al.  Emotional state classification from EEG data using machine learning approach , 2014, Neurocomputing.

[12]  Johan Hagelbäck,et al.  Evaluating Classifiers for Emotion Recognition Using EEG , 2013, HCI.

[13]  C. Adams,et al.  A systematic review of studies of depression prevalence in university students. , 2013, Journal of psychiatric research.

[14]  K. Peltzer,et al.  Depression and Associated Factors Among University Students in Western Nigeria , 2013 .

[15]  R. McIntyre,et al.  The neurobiology of the EEG biomarker as a predictor of treatment response in depression , 2012, Neuropharmacology.

[16]  C. Glazebrook,et al.  Analysis of an Egyptian study on the socioeconomic distribution of depressive symptoms among undergraduates , 2012, Social Psychiatry and Psychiatric Epidemiology.

[17]  Miro Jakovljević,et al.  Quantitative electroencephalography in schizophrenia and depression. , 2011, Psychiatria Danubina.

[18]  R. H. McAllister-Williams,et al.  The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants , 2011, Journal of psychopharmacology.

[19]  Bin Hu,et al.  EEG-Based Cognitive Interfaces for Ubiquitous Applications: Developments and Challenges , 2011, IEEE Intelligent Systems.

[20]  Reza Rostami,et al.  Classifying depression patients and normal subjects using machine learning techniques , 2011, 2011 19th Iranian Conference on Electrical Engineering.

[21]  Chin-Teng Lin,et al.  An EEG-based classification system of Passenger's motion sickness level by using feature extraction/selection technologies , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[22]  Eibe Frank,et al.  Large-scale attribute selection using wrappers , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[23]  David A. Cieslak,et al.  A framework for monitoring classifiers’ performance: when and why failure occurs? , 2009, Knowledge and Information Systems.

[24]  C. Beevers,et al.  Time course of selective attention in clinically depressed young adults: an eye tracking study. , 2008, Behaviour research and therapy.

[25]  Christoph Lehmann,et al.  Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG) , 2007, Journal of Neuroscience Methods.

[26]  M. Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[27]  Alexander A. Fingelkurts,et al.  Composition of brain oscillations in ongoing EEG during major depression disorder , 2006, Neuroscience Research.

[28]  J. P. Kline,et al.  Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study , 2006, Biological Psychology.

[29]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[30]  Mike Rinck,et al.  A comparison of attentional biases and memory biases in women with social phobia and major depression. , 2005, Journal of abnormal psychology.

[31]  I. Gotlib,et al.  Attentional biases for negative interpersonal stimuli in clinical depression. , 2004, Journal of abnormal psychology.

[32]  Geoff Holmes,et al.  Benchmarking Attribute Selection Techniques for Discrete Class Data Mining , 2003, IEEE Trans. Knowl. Data Eng..

[33]  V. P. Omel'chenko,et al.  Changes in the EEG-Rhythms in Endogenous Depressive Disorders and the Effect of Pharmacotherapy , 2002, Human Physiology.

[34]  Gro Harlem Brundtland,et al.  Mental Health: New Understanding, New Hope , 2001 .

[35]  V. Knott,et al.  EEG power, frequency, asymmetry and coherence in male depression , 2001, Psychiatry Research: Neuroimaging.

[36]  D. Tucker,et al.  Scalp electrode impedance, infection risk, and EEG data quality , 2001, Clinical Neurophysiology.

[37]  Lloyd A. Smith,et al.  Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper , 1999, FLAIRS.

[38]  R. Post,et al.  Abnormal Facial Emotion Recognition in Depression: , 1998, Behavior modification.

[39]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[40]  A. Beck,et al.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.

[41]  Daryl Pregibon,et al.  A statistical perspective on KDD , 1995, KDD 1995.

[42]  Jeffrey B. Henriques,et al.  Left frontal hypoactivation in depression. , 1991, Journal of abnormal psychology.

[43]  Hiie Hinrikus,et al.  Lempel Ziv Complexity of EEG in Depression , 2015 .

[44]  Elham Parvinnia,et al.  Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm , 2014, J. King Saud Univ. Comput. Inf. Sci..

[45]  S. Saxena,et al.  Depression: a global public health concern , 2012 .

[46]  Julius Georgiou,et al.  Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines , 2012, Expert Syst. Appl..

[47]  Luo Yuejia,et al.  Revision of the Chinese Facial Affective Picture System , 2011 .

[48]  Panteleimon Giannakopoulos,et al.  Electrophysiological markers of rapid cognitive decline in mild cognitive impairment. , 2009, Frontiers of neurology and neuroscience.

[49]  Eduardo Aubert,et al.  EEG sources in a group of patients with major depressive disorders. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[50]  Hamid Parvin,et al.  MKNN: Modified K-Nearest Neighbor , 2008 .

[51]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[52]  Yi-sheng Zhu,et al.  Use of ANN and Complexity Measures in Cognitive EEG Discrimination , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[53]  M. Sung,et al.  Objective physiological and behavioral measures for identifying and tracking depression state in clinically depressed patients , 2005 .

[54]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .