Orthogonal Polynomials and Painlevé Equations

The Riemann-Hilbert formulation of orthogonal polynomials provides a crucial bridge between disparate areas of mathematics, allowing tools developed in the context of integrable systems to be available for the study of orthogonal polynomials and random matrix theory. A Riemann-Hilbert formulations is also at the heart of the Inverse Scattering transform. In this case, the isolated singularities of the data of the RH problem are well know to play a special role, for example they identify the structurally stable components of the solution. Using the unified transform of Fokas, one can give such formulations also for boundary value problems. The class of linear constant-coefficient PDEs is a special example of integrable PDEs, hence boundary value problems for such PDEs admit a Riemann-Hilbert formulation. I will discuss the important role that the singularities of such RH problems play, in particular their importance in elucidating the spectral structure of linear differential operators in one and two variables. Orthogonal polynomials and integral transforms Ana Loureiro (University of Kent) Abstract. In this talk I will explain how operating with certain integral transforms over polynomial sequences is a useful tool to obtain and deduce properties of one sequence based on the other. A special attention will be given to certain d-orthogonal polynomial sequences, which basically are polynomial sequences satisfying a recurrence relation of order d + 1. When d = 1, we recover the orthogonal case. Examples of some known polynomial sequences with a plank of applications will be used to illustrate the usefulness of the technique. Among the targeted sequences, some semiclassical polynomials will arise, whose weights correspond to certain deformation of the classical weights.

[1]  A. Ramani,et al.  Discrete Painlevé Equations , 2019 .

[2]  A. Kuijlaars,et al.  Exceptional Laguerre Polynomials , 2017, 1708.03106.

[3]  Ana F. Loureiro,et al.  Unique positive solution for an alternative discrete Painlevé I equation , 2015, 1508.04916.

[4]  P. Clarkson,et al.  A Generalized Freud Weight , 2015, 1510.03772.

[5]  Antonio J. Dur'an Exceptional Hahn and Jacobi orthogonal polynomials , 2015, 1510.02579.

[6]  K. Kajiwara,et al.  Geometric aspects of Painlevé equations , 2015, 1509.08186.

[7]  T. Claeys,et al.  Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge , 2015, Communications in Mathematical Physics.

[8]  Tom Claeys,et al.  Random Matrix Ensembles with Singularities and a Hierarchy of Painlevé III Equations , 2015, 1501.04475.

[9]  Dan Dai,et al.  Painlevé III asymptotics of Hankel determinants for a singularly perturbed Laguerre weight , 2014, J. Approx. Theory.

[10]  I. Krasovsky,et al.  Toeplitz determinants with merging singularities , 2014, 1403.3639.

[11]  Walter Van Assche,et al.  Variations of Stieltjes-Wigert and q-Laguerre polynomials and their recurrence coefficients , 2013, J. Approx. Theory.

[12]  Walter Van Assche,et al.  Multiple orthogonal polynomials associated with an exponential cubic weight , 2013, J. Approx. Theory.

[13]  M. Y. Mo,et al.  A Matrix Model with a Singular Weight and Painlevé III , 2010, 1003.2964.

[14]  Antonio J. Dur'an,et al.  Admissibility condition for exceptional Laguerre polynomials , 2014, 1409.4901.

[15]  A. J. Durán Full length article: Exceptional Meixner and Laguerre orthogonal polynomials , 2014 .

[16]  Dimitar K. Dimitrov,et al.  Monotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomials , 2014, J. Approx. Theory.

[17]  Fabio Baronio,et al.  Vector rogue waves and baseband modulation instability in the defocusing regime. , 2014, Physical review letters.

[18]  P. Miller,et al.  Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour , 2013, 1406.0826.

[19]  P. Clarkson,et al.  The Relationship Between Semiclassical Laguerre Polynomials and the Fourth Painlevé Equation , 2013, 1301.4134.

[20]  Antonio J. Duran,et al.  Exceptional Charlier and Hermite orthogonal polynomials , 2013, 1309.1175.

[21]  Antonio Degasperis,et al.  Rational solitons of wave resonant-interaction models. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Fabio Baronio,et al.  Rogue waves emerging from the resonant interaction of three waves. , 2013, Physical review letters.

[23]  R. Milson,et al.  Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials , 2012, 1204.2282.

[24]  Lun Zhang,et al.  The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation , 2011, 1105.5229.

[25]  Erik Koelink,et al.  Review of ``Classical and quantum orthogonal polynomials in one variable. "by Mourad E.H. Ismail , 2011 .

[26]  W. Assche,et al.  Recurrence Coefficients of a New Generalization of the Meixner Polynomials , 2011, 1104.3773.

[27]  W. Assche,et al.  Orthogonal Polynomials on a Bi-lattice , 2011, 1101.1817.

[28]  W. Van Assche,et al.  Recurrence coefficients of generalized Meixner polynomials and Painlevé equations , 2011 .

[29]  Pavel Bleher,et al.  Topological Expansion in the Cubic Random Matrix Model , 2010, 1011.6338.

[30]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[31]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[32]  A. Zhedanov,et al.  Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations , 2010, 1004.4711.

[33]  A. Its,et al.  Emergence of a singularity for Toeplitz determinants and Painlevé V , 2010, 1004.3696.

[34]  W. Assche,et al.  DISCRETE PAINLEVÉ EQUATIONS FOR RECURRENCE COEFFICIENTS OF SEMICLASSICAL LAGUERRE POLYNOMIALS , 2010 .

[35]  Daan Huybrechs,et al.  Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature , 2010, J. Approx. Theory.

[36]  Yang Chen,et al.  Painlevé VI and the Unitary Jacobi Ensembles , 2009, 0911.5636.

[37]  Yang Chen,et al.  Painlevé V and time-dependent Jacobi polynomials , 2009, 0905.2620.

[38]  W. Van Assche,et al.  q-Discrete Painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials , 2008, 0808.0982.

[39]  A. Kuijlaars,et al.  Painlevé IV Asymptotics for Orthogonal Polynomials with Respect to a Modified Laguerre Weight , 2008, 0804.2564.

[40]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[41]  P. Clarkson PAINLEVÉ EQUATIONS THROUGH SYMMETRY (Translations of Mathematical Monographs 223) , 2006 .

[42]  Maurice Duits,et al.  Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight , 2006, math/0605201.

[43]  Alphonse P. Magnus,et al.  Freud equations for Legendre polynomials on a circular arc and solution of the Grünbaum-Delsarte-Janssen-Vries problem , 2006, J. Approx. Theory.

[44]  H. Sakai,et al.  Studies on the Painleve Equations, V, Third Painleve Equations of Special Type PIII(D7) and PIII(D8) , 2006 .

[45]  A. Kuijlaars,et al.  Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005, math-ph/0508062.

[46]  I. A. Rocha,et al.  Asymptotics of polynomials orthogonal with respect to a discrete-complex Sobolev inner product , 2005 .

[47]  P. Clarkson Special polynomials associated with rational solutions of the fifth Painlevé equation , 2005 .

[48]  Plamen Simeonov,et al.  Difference Equations and Discriminants for Discrete Orthogonal Polynomials , 2005 .

[49]  A A Kapaev,et al.  Quasi-linear Stokes phenomenon for the Painlevé first equation , 2004, nlin/0404026.

[50]  Peter A. Clarkson,et al.  PAINLEVÉ DIFFERENTIAL EQUATIONS IN THE COMPLEX PLANE (de Gruyter Studies in Mathematics 28) , 2003 .

[51]  P. Clarkson The fourth Painlevé equation and associated special polynomials , 2003 .

[52]  P. Clarkson The third Painlevé equation and associated special polynomials , 2003 .

[53]  P. Clarkson,et al.  The second Painlevé equation, its hierarchy and associated special polynomials , 2003 .

[54]  Mourad E. H. Ismail,et al.  Difference equations and quantized discriminants for q-orthogonal polynomials , 2003, Adv. Appl. Math..

[55]  T. Masuda Classical transcendental solutions of the Painleve equations and their degeneration , 2003, nlin/0302026.

[56]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[57]  Y. Ohta,et al.  A determinant formula for a class of rational solutions of Painlevé V equation , 2001, Nagoya Mathematical Journal.

[58]  P. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[59]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[60]  M. Mazzocco Rational solutions of the Painlevé VI equation , 2000, nlin/0007036.

[61]  M. N. Hounkonnou,et al.  Discrete semi-classical orthogonal polynomials: generalized Charlier , 2000 .

[62]  M. Noumi,et al.  Symmetries in the fourth Painlevé equation and Okamoto polynomials , 1997, Nagoya Mathematical Journal.

[63]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[64]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[65]  Y. Ohta,et al.  Determinant structure of the rational solutions for the Painlevé II equation , 1996, solv-int/9709011.

[66]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[67]  A. Magnus Special nonuniform lattice ( snul ) orthogonal polynomials on discrete dense sets of points , 1995, math/9502228.

[68]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[69]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[70]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[71]  P. Deift,et al.  A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.

[72]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[73]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[74]  D. Shevitz,et al.  Unitary-matrix models as exactly solvable string theories. , 1990, Physical review letters.

[75]  H. Mhaskar,et al.  A proof of Freud's conjecture for exponential weights , 1988 .

[76]  Kazuo Okamoto Studies on the Painleve equations II , 1987 .

[77]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[78]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[79]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[80]  Paul Nevai,et al.  Orthogonal polynomials and their derivatives, I , 1984 .

[81]  H. Airault,et al.  Rational solutions of Painleve equations , 1979 .

[82]  岡本 和夫,et al.  Sur les feuilletages associes aux equations du second ordre a points critiques fixes de P. Painleve , 1978 .

[83]  J. Shohat A differential equation for orthogonal polynomials , 1939 .

[84]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .