Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics

The goal of this paper is to improve the performance of an electric motor by modifying the geometry of a specific part of the iron core of its rotor. To be more precise, the objective is to smooth the rotation pattern of the rotor. A shape optimization problem is formulated by introducing a tracking-type cost functional to match a desired rotation pattern. The magnetic field generated by permanent magnets is modeled by a nonlinear partial differential equation of magnetostatics. The shape sensitivity analysis is rigorously performed for the nonlinear problem by means of a new shape-Lagrangian formulation adapted to nonlinear problems.

[1]  Michael Hintermüller,et al.  A shape and topology optimization technique for solving a class of linear complementarity problems in function space , 2010, Comput. Optim. Appl..

[2]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[3]  Thomas Richter,et al.  A Locally Modified Parametric Finite Element Method for Interface Problems , 2014, SIAM J. Numer. Anal..

[4]  Walter Zulehner,et al.  The Ciarlet-Raviart Method for Biharmonic Problems on General Polygonal Domains: Mapping Properties and Preconditioning , 2015, SIAM J. Numer. Anal..

[5]  J. Lindsay,et al.  Magnetic field analysis of a switched reluctance motor using a two dimensional finite element model , 1985 .

[6]  Jae Seok Choi,et al.  Topology Optimization of the Stator for Minimizing Cogging Torque of IPM Motors , 2011, IEEE Transactions on Magnetics.

[7]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[8]  Helmut Gfrerer,et al.  Quantitative Stability of Optimization Problems and Generalized Equations , 2014 .

[9]  W. Amrhein,et al.  A flux-based PMSM motor model using RBF interpolation for time-stepping simulations , 2013, 2013 International Electric Machines & Drives Conference.

[10]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[11]  Michael Jung,et al.  Methode der finiten Elemente für Ingenieure , 2001 .

[12]  Jae Seok Choi,et al.  Rotor pole design of IPM motors for a sinusoidal air-gap flux density distribution , 2012 .

[13]  Michelle Becker Finite Element Approximation For Optimal Shape Material And Topology Design , 2016 .

[14]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[15]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[16]  Subrata Mukherjee,et al.  Shape Sensitivity Analysis , 2005, Encyclopedia of Continuum Mechanics.

[17]  Jan Sokolowski,et al.  Topological Derivatives for Semilinear Elliptic Equations , 2009, Int. J. Appl. Math. Comput. Sci..

[18]  D Miyagi,et al.  Optimization of Rotor of Actual IPM Motor Using ON/OFF Method , 2011, IEEE Transactions on Magnetics.

[19]  Ebrahim Afjei,et al.  Comprehensive Study of 2-D and 3-D Finite Element Analysis of a Switched Reluctance Motor , 2008 .

[20]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[21]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[22]  J. Haslinger,et al.  2. A Mathematical Introduction to Sizing and Shape Optimization , 2003 .

[23]  Michael Hintermüller,et al.  Topological sensitivity analysis in fluorescence optical tomography , 2013 .

[24]  Jan Sokolowski,et al.  On the analysis of boundary value problems in nonsmooth domains , 2009 .

[25]  Jung-Pyo Hong,et al.  Optimal Stator Design of Interior Permanent Magnet Motor to Reduce Torque Ripple Using the Level Set Method , 2010, IEEE Transactions on Magnetics.

[26]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[27]  Antoine Laurain,et al.  A semismooth Newton method for a class of semilinear optimal control problems with box and volume constraints , 2013, Comput. Optim. Appl..

[28]  Jan Sokolowski,et al.  A Level Set Method in Shape and Topology Optimization for Variational Inequalities , 2007, Int. J. Appl. Math. Comput. Sci..

[29]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[30]  Antonio André Novotny,et al.  Topological Derivatives in Shape Optimization , 2012 .

[31]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[32]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[33]  Clemens Hofreither,et al.  Interpolating Solutions of the Poisson Equation in the Disk Based on Radon Projections , 2015 .

[34]  Andreas Binder,et al.  Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten , 2017 .

[35]  Gundolf Haase,et al.  Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations , 1997 .

[36]  J. Schöberl,et al.  Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time , 2014 .

[37]  K. Sturm,et al.  Domain expression of the shape derivative and application to electrical impedance tomography , 2013 .

[38]  Daisuke Miyagi,et al.  Examination of Optimal Design of IPM Motor Using ON/OFF Method , 2010, IEEE Transactions on Magnetics.

[39]  Antoine Laurain GLOBAL MINIMIZER OF THE GROUND STATE FOR TWO PHASE CONDUCTORS IN LOW CONTRAST REGIME , 2014 .

[40]  B. Jüttler,et al.  Monotonicity-preserving interproximation of B-H -curves , 2006 .

[41]  M. HINTERMÜLLER,et al.  Optimal Shape Design Subject to Elliptic Variational Inequalities , 2011, SIAM J. Control. Optim..

[42]  Ulrich Langer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Topology Optimization of Electric Machines Based on Topological Sensitivity Analysis , 2013 .

[43]  V. Schulz,et al.  Three-Dimensional Large-Scale Aerodynamic Shape Optimization Based on Shape Calculus , 2013 .

[44]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[45]  Patrick Le Tallec,et al.  Numerical methods in sensitivity analysis and shape optimization , 2002, Modeling and simulation in science, engineering and technology.

[46]  S. Stępień,et al.  Analysis of 2D and 3D Finite Element Approach of a Switched Reluctance Motor , 2011 .

[47]  Kevin Sturm Lagrange method in shape optimization for non-linear partial differential equations : A material derivative free approach , 2013 .

[48]  Bodo Heise Analysis of a fully discrete finite element method for a nonlinear magnetic field problem , 1994 .

[49]  W. Zulehner,et al.  A Decomposition Result for Biharmonic Problems and the Hellan-herrmann-johnson Method a Decomposition Result for Biharmonic Problems and the Hellan-herrmann-johnson Method * , 2022 .

[50]  W. Marsden I and J , 2012 .

[51]  C. Pechstein Finite and Boundary Element Tearing and Interconnecting Methods for Multiscale Elliptic PDEs , 2009 .