Sheet Probability Index (SPI): Characterizing the geometrical organization of the white matter with diffusion MRI

[1]  Martijn Froeling,et al.  “MASSIVE” brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation , 2017, Magnetic resonance in medicine.

[2]  Max A. Viergever,et al.  Mapping the brain's "sheet probability index" (SPI) with diffusion MRI: sheet happens?! , 2016 .

[3]  Maxime Descoteaux,et al.  Robust and efficient linear registration of white-matter fascicles in the space of streamlines , 2015, NeuroImage.

[4]  P. Thomas Fletcher,et al.  Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration , 2015, IPMI.

[5]  Jean-Philippe Thiran,et al.  COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography , 2015, IEEE Transactions on Medical Imaging.

[6]  Alfred O. Hero,et al.  Parameter Estimation in Spherical Symmetry Groups , 2015, IEEE Signal Processing Letters.

[7]  Andrea Fuster,et al.  Towards quantification of the brain’s sheet structure in diffusion MRI data , 2015 .

[8]  Dmitry S. Novikov,et al.  MesoFT: Unifying Diffusion Modelling and Fiber Tracking , 2014, MICCAI.

[9]  Maxime Descoteaux,et al.  Real-time multi-peak tractography for instantaneous connectivity display , 2014, Front. Neuroinform..

[10]  Simon K. Warfield,et al.  A Mathematical Framework for the Registration and Analysis of Multi-Fascicle Models for Population Studies of the Brain Microstructure , 2014, IEEE Transactions on Medical Imaging.

[11]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[12]  C. Wheeler-Kingshott,et al.  A ranking of diffusion MRI compartment models with in vivo human brain data , 2013, Magnetic resonance in medicine.

[13]  Max A. Viergever,et al.  Towards quantification of the brain's sheet structure : evaluation of the discrete Lie bracket , 2014 .

[14]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[15]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[16]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[17]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[18]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[19]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[20]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[21]  Stefan Klein,et al.  Improving alignment in Tract-based spatial statistics: Evaluation and optimization of image registration , 2013, NeuroImage.

[22]  Carl-Fredrik Westin,et al.  Unbiased Groupwise Registration of White Matter Tractography , 2012, MICCAI.

[23]  Peter Savadjiev,et al.  Multi-scale Characterization of White Matter Tract Geometry , 2012, MICCAI.

[24]  Flavio Dell'Acqua,et al.  Comment on “The Geometric Structure of the Brain Fiber Pathways” , 2012, Science.

[25]  J. Kaas,et al.  Response to Comment on “The Geometric Structure of the Brain Fiber Pathways” , 2012, Science.

[26]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[27]  B. M. ter Haar Romeny,et al.  Tractography of the optic radiation for vision sparing epilepsy surgery , 2012, 2012 IEEE International Conference on Information and Automation.

[28]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[29]  Stuart Crozier,et al.  Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images , 2012, NeuroImage.

[30]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[31]  Stuart Crozier,et al.  Symmetric diffeomorphic registration of fibre orientation distributions , 2011, NeuroImage.

[32]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[33]  C. Westin,et al.  Estimation of the Angle Between Crossing Fibers as a Novel Structural Quantity , 2011 .

[34]  Derek K. Jones Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI , 2010 .

[35]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[36]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[37]  Hans-Peter Seidel,et al.  Crease Surfaces: From Theory to Extraction and Application to Diffusion Tensor MRI , 2010, IEEE Transactions on Visualization and Computer Graphics.

[38]  Andrea Fuster,et al.  A Riemannian scalar measure for diffusion tensor images , 2009, Pattern Recognit..

[39]  Carl-Fredrik Westin,et al.  Tract-based morphometry for white matter group analysis , 2009, NeuroImage.

[40]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[41]  Paul A. Yushkevich,et al.  Structure-specific statistical mapping of white matter tracts , 2007, NeuroImage.

[42]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[43]  Carl-Fredrik Westin,et al.  Delineating white matter structure in diffusion tensor MRI with anisotropy creases , 2007, Medical Image Anal..

[44]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[45]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[46]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[47]  J Sijbers,et al.  Multiscale white matter fiber tract coregistration: A new feature‐based approach to align diffusion tensor data , 2006, Magnetic resonance in medicine.

[48]  Susumu Mori,et al.  Image contrast using the secondary and tertiary eigenvectors in diffusion tensor imaging , 2006, Magnetic resonance in medicine.

[49]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[50]  Paul A. Yushkevich,et al.  Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization , 2005, MICCAI.

[51]  Anna Vilanova,et al.  DTI visualization with streamsurfaces and evenly-spaced volume seeding , 2004, VISSYM'04.

[52]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[53]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[54]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[55]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[56]  S. Lang Differential and Riemannian Manifolds , 1996 .

[57]  Fernando Zelaya,et al.  High-resolution q-space imaging in porous structures , 1990 .

[58]  M. Spivak A comprehensive introduction to differential geometry , 1979 .