Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial

We present new inferences of the radial profile of mantle viscosity that simultaneously fit long-wavelength free-air gravity harmonics associated with mantle convection and a large set of decay times estimated from the postglacial uplift of sites within previously glaciated regions (Hudson Bay, Arctic Canada, and Fennoscandia). The relative sea level variation at these latter sites is constrained by age-height pairs obtained by geological survey, rather than the subjective trends which are commonly used in glacial isostatic adjustment (GIA) studies. Our viscosity inferences are generated using two approaches. First, we adopt a relative viscosity profile which is known to provide a good fit to the free-air gravity harmonics and determine an absolute scaling which yields a best fit to the GIA decay time constraints. Second, we perform an iterative, nonlinear, joint inversion of the two data sets. In both cases our inferred profiles are characterized by a significant increase of viscosity (∼2 orders of magnitude), with depth, to values of ∼1022 Pa s in the bottom half of the lower mantle. The new viscosity profiles are shown to satisfy constraints based on the postglacial uplift of both Fennoscandia (the classic Haskell [1935] number) and Hudson Bay which have commonly been invoked to argue for an isoviscous mantle. Furthermore, the models are used to predict a set of long-wavelength signatures of the GIA process. These include predictions of GIA-induced variations in (1) the length-of-day over the late Holocene period; (2) the Earth's precession constant and obliquity over the last 2.6 Myr; and (3) the present-day zonal harmonics of the geopotential, Jl(l≤7). The predictions (1) and (3) bound the late Holocene (and ongoing) mass flux between the large polar ice sheets (Greenland and Antarctic) and the global oceans to small values (≤0.4 mm/yr equivalent eustatic sea level rise).

[1]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[2]  M. Richards Hotspots and the Case for a High Viscosity Lower Mantle , 1991 .

[3]  J. Mitrovica,et al.  Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America , 1996, Nature.

[4]  J. Mitrovica,et al.  Late Pleistocene and Holocene ice mass fluctuations and the Earth's precession constant , 1994 .

[5]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[6]  J. Mitrovica Reply to comment by L. Cathles and W. Fjeldskaar on 'The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectrum' , 1993 .

[7]  M. Fang,et al.  Surface Deformation Caused by Pressure Changes in the Fluid Core , 1996 .

[8]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load. Part II , 1936 .

[9]  Guy Masters,et al.  An inversion for radial viscosity structure using seismic tomography , 1992 .

[10]  W. Peltier,et al.  Present-day secular variations in the zonal harmonics of earth's geopotential , 1993 .

[11]  Bradford H. Hager,et al.  Mantle Viscosity: A Comparison of Models from Postglacial Rebound and from the Geoid, Plate Driving Forces, and Advected Heat Flux , 1991 .

[12]  K. Lambeck,et al.  Glacial rebound and relative sea-level variations: a new appraisal , 1987 .

[13]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[14]  J. Wahr,et al.  The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound , 1995 .

[15]  David A. Yuen,et al.  The influences of lower mantle viscosity stratification on 3D spherical-shell mantle convection , 1995 .

[16]  J. Wahr,et al.  Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984 , 1992 .

[17]  W. Peltier,et al.  The procession constant of the Earth: Variations through the Ice‐Age , 1994 .

[18]  J. Wahr,et al.  Constraints on Long-Period Sea Level Variations from Global Tide Gauge Data , 1991 .

[19]  L. Cathles,et al.  The Viscosity of the Earth's Mantle , 1975 .

[20]  P. Johnston The effect of spatially non‐uniform water loads on prediction of sea‐level change , 1993 .

[21]  S. M. Nakiboglu,et al.  Deglaciation effects on the rotation of the Earth , 1980 .

[22]  L. V. Morrison,et al.  Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990 , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[23]  D. Yuen,et al.  Time‐domain approach for the transient responses in stratified viscoelastic Earth models , 1995 .

[24]  J. Mitrovica,et al.  Glaciation-induced variations in the Earth's precession frequency, obliquity and insolation over the last 2.6 Ma , 1997 .

[25]  W. Peltier,et al.  On postglacial geoid subsidence over the equatorial oceans , 1991 .

[26]  W. Peltier,et al.  A complete formalism for the inversion of post-glacial rebound data: resolving power analysis , 1991 .

[27]  M. Loutre,et al.  Potential impact of the northern hemisphere Quaternary ice sheets on the frequencies of the astroclimatic orbital parameters , 1990 .

[28]  W. Peltier,et al.  Pleistocene deglaciation and the Earth's rotation: a new analysis , 1984 .

[29]  E. Ivins,et al.  Present-day Antarctic Ice Mass Changes and Crustal Motion , 1995 .

[30]  M. Fang,et al.  A singularity free approach to post glacial rebound calculations , 1994 .

[31]  G. Spada,et al.  Lateral viscosity variations and post‐glacial rebound: Effects on present‐day VLBI baseline deformations , 1997 .

[32]  F. Niu,et al.  Seismic evidence for a 920-km discontinuity in the mantle , 1994, Nature.

[33]  J. Mitrovica,et al.  Pleistocene glaciation and the Earth's precession constant , 1995 .

[34]  W. R. Peltier,et al.  Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity , 1983 .

[35]  L. Cathles,et al.  The present rate of uplift of Fennoscandia implies a low‐viscosity asthenosphere , 1991 .

[36]  New constraints on transient lower mantle rheology and internal mantle buoyancy from glacial rebound data , 1985, Nature.

[37]  R. O’Connell Pleistocene Glaciation and the Viscosity of the Lower Mantle , 1971 .

[38]  M. Richards,et al.  Deflection of plumes by mantle shear flow: experimental results and a simple theory , 1988 .

[39]  Earth deceleration from ancient solar eclipses , 1966 .

[40]  M. Fang,et al.  The singularity mystery associated with a radially continuous Maxwell viscoelastic structure , 1995 .

[41]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[42]  D. Wolf An upper bound on lithosphere thickness from glacio-isostatic adjustment in Fennoscandia , 1987 .

[43]  A. Cazenave,et al.  Temporal Variations of the Earth Gravity Field For 1985–1989 Derived From Lageos , 1993 .

[44]  I. Shapiro,et al.  Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America , 1993 .

[45]  M. Gurnis,et al.  Numerical study of high Rayleigh number convection in a medium with depth-dependent viscosity , 1986 .

[46]  Mark A. Richards,et al.  Effect of depth-dependent viscosity on the planform of mantle convection , 1996, Nature.

[47]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[48]  André Berger,et al.  An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[49]  W. Peltier,et al.  Plate tectonics and aspherical earth structure: The Importance of poloidal‐toroidal coupling , 1987 .

[50]  D. Yuen,et al.  Viscosity of the lower mantle as inferred from rotational data , 1982 .

[51]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[52]  C. Froidevaux,et al.  Geoid heights and lithospheric stresses for a dynamic Earth. , 1984 .

[53]  Bruce C. Douglas,et al.  Global sea level rise , 1991 .

[54]  P. Gasperini,et al.  Lateral heterogeneities in mantle viscosity and post‐glacial rebound , 1989 .

[55]  A. Trupin Effects of polar ice on the Earth's rotation and gravitational potential , 1993 .

[56]  Erik R. Ivins,et al.  Deep mantle viscous structure with prior estimate and satellite constraint , 1993 .

[57]  A. Chopelas Sound velocities of MgO to very high compression , 1992 .

[58]  S. King Radial models of mantle viscosity: results from a genetic algorithm , 1995 .

[59]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 2. Present‐day glacial isostatic adjustment , 1994 .

[60]  D. Yuen,et al.  Mantle stratification and long-term polar wander , 1989, Nature.

[61]  D. Rubincam Mars: Change in Axial Tilt Due to Climate? , 1990, Science.

[62]  W. Peltier,et al.  Constraints on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region , 1995 .

[63]  K. Lambeck,et al.  Late Pleistocene and Holocene sea‐level change in the Australian region and mantle rheology , 1989 .

[64]  M. Manga,et al.  The tectosphere and postglacial rebound , 1995 .

[65]  J. Mitrovica,et al.  New inferences of mantle viscosity from joint inversion of long‐wavelength mantle convection and post‐glacial rebound data , 1996 .

[66]  K. Lambeck,et al.  Holocene glacial rebound and sea-level change in NW Europe , 1990 .

[67]  C. Froidevaux,et al.  Converting mantle tomography into mass anomalies to predict the Earth's radial viscosity , 1994 .

[68]  W. Peltier,et al.  Post-glacial rebound and transient lower mantle rheology , 1986 .

[69]  T. James,et al.  A comparison of VLBI data with the Ice‐3G Glacial Rebound Model , 1993 .

[70]  D. Wolf Note on estimates of the glacial-isostatic decay spectrum for Fennoscandia , 1996 .

[71]  D. Yuen,et al.  On transient rheology and glacial isostasy , 1986 .

[72]  W. Peltier,et al.  Ice Age Paleotopography , 1994, Science.

[73]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[74]  D. Yuen,et al.  The effects of upper‐mantle lateral heterogeneities on postglacial rebound , 1986 .

[75]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[76]  C. Vigny,et al.  Mantle heterogeneities, geoid, and plate motion: A Monte Carlo inversion , 1989 .

[77]  W. Peltier,et al.  ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of po , 1991 .

[78]  R. Peltier,et al.  Viscous flow models of global geophysical observables: 1. Forward problems , 1991 .

[79]  M. Meier Contribution of Small Glaciers to Global Sea Level , 1984, Science.

[80]  C. Vigny,et al.  Mantle dynamics with induced plate tectonics , 1989 .

[81]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[82]  D. Yuen,et al.  Mantle rheology and satellite signatures from present-day glacial forcings , 1988 .

[83]  R. McConnell,et al.  Viscosity of the mantle from relaxation time spectra of isostatic adjustment , 1968 .

[84]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[85]  W. Peltier,et al.  Global Sea Level Rise and the Greenhouse Effect: Might They Be Connected? , 1989, Science.

[86]  W. Peltier,et al.  Glacial isostatic adjustment and Earth rotation: Refined constraints on the viscosity of the deepest mantle , 1996 .

[87]  Takashi Ito,et al.  Climate friction: A possible cause for secular drift of Earth's obliquity , 1995 .

[88]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[89]  W. Peltier,et al.  Pleistocene deglaciation and the Earth's rotation: implications for mantle viscosity , 1981 .

[90]  W. Peltier,et al.  Inferences of mantle viscosity from tectonic plate velocities , 1991 .

[91]  G. Spada,et al.  Excitation of true polar wander by subduction , 1992, Nature.

[92]  W. Peltier,et al.  Pleistocene deglaciation and the global gravity field , 1989 .

[93]  D. Yuen,et al.  The effects of transient rheology on the interpretation of lower mantle viscosity , 1985 .

[94]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[95]  W. R. Peltier,et al.  Validation of the ICE‐3G Model of Würm‐Wisconsin Deglaciation using a global data base of relative sea level histories , 1992 .

[96]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .

[97]  A. Dziewoński,et al.  Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity , 1994 .

[98]  M. Gurnis Rapid Continental Subsidence Following the Initiation and Evolution of Subduction , 1992, Science.

[99]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .