Image mining for investigative pathology using optimized feature extraction and data fusion

[1]  N. Chiorazzi,et al.  mechanisms of disease Chronic Lymphocytic Leukemia , 2010 .

[2]  Model based object recognition by robust information fusion , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[3]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[4]  John R. Josephson,et al.  RED: A red-cell antibody identification expert module , 1985, Journal of Medical Systems.

[5]  B. S. Manjunath,et al.  Texture-based pattern retrieval from image databases , 2004, Multimedia Tools and Applications.

[6]  J. Berman Concept-match medical data scrubbing. How pathology text can be used in research. , 2003, Archives of pathology & laboratory medicine.

[7]  Patrice Degoulet,et al.  A customizable similarity measure between histological cases , 2002, AMIA.

[8]  J. Suri,et al.  Advanced algorithmic approaches to medical image segmentation: state-of-the-art application in cardiology, neurology, mammography and pathology , 2001 .

[9]  Dorin Comaniciu,et al.  Cell image segmentation for diagnostic pathology , 2001 .

[10]  P. Bartels,et al.  Karyometry of secretory cell nuclei in high‐grade PIN lesions * , 2001, The Prostate.

[11]  D. Grobbee,et al.  Neural network‐based screening (NNS) in cervical cytology: No need for the light microscope? , 2001, Diagnostic cytopathology.

[12]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[13]  F. Schnorrenberg,et al.  Content-based retrieval of breast cancer biopsy slides. , 2000, Technology and health care : official journal of the European Society for Engineering and Medicine.

[14]  Dorin Comaniciu,et al.  Computer-assisted discrimination among malignant lymphomas and leukemia using immunophenotyping, intelligent image repositories, and telemicroscopy , 2000, IEEE Transactions on Information Technology in Biomedicine.

[15]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[16]  M. Cenci,et al.  PAPNET-assisted primary screening of conventional cervical smears. , 2000, Anticancer research.

[17]  Perry L. Miller,et al.  Research Paper: PathMaster: Content-based Cell Image Retrieval Using Automated Feature Extraction , 2000, J. Am. Medical Informatics Assoc..

[18]  Patrice Degoulet,et al.  Towards content-based image retrieval in a HIS-integrated PACS , 2000, AMIA.

[19]  James Zijun Wang,et al.  Pathfinder: multiresolution region-based searching of pathology images using IRM , 2000, AMIA.

[20]  M. Köppen,et al.  The Curse of Dimensionality , 2010 .

[21]  R. Kiss,et al.  Computer-assisted analysis of epiluminescence microscopy images of pigmented skin lesions. , 1999, Cytometry.

[22]  Dorin Comaniciu,et al.  Image-guided decision support system for pathology , 1999, Machine Vision and Applications.

[23]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[24]  John R. Gilbertson,et al.  Evaluation of prostate tumor grades by content-based image retrieval , 1999, Other Conferences.

[25]  Ramesh C. Jain,et al.  Pattern Recognition Methods in Image and Video Databases: Past, Present and Future , 1998, SSPR/SPR.

[26]  B. Nathwani,et al.  Evaluation of an expert system on lymph node pathology. , 1997, Human pathology.

[27]  Bruce A. Draper,et al.  FOCUS: Searching for multi-colored objects in a diverse image database , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  James Ze Wang,et al.  Wavelet-based image indexing techniques with partial sketch retrieval capability , 1997, Proceedings of ADL '97 Forum on Research and Technology. Advances in Digital Libraries.

[29]  M. Seto,et al.  Clinicopathologic study of PRAD1/cyclin D1 overexpressing lymphoma with special reference to mantle cell lymphoma. A distinct molecular pathologic entity. , 1996, The American journal of surgical pathology.

[30]  J. Garcia-conde,et al.  Mantle cell lymphoma: a lymphoproliferative disorder associated with aberrant function of the cell cycle. , 1996, Leukemia.

[31]  G. Ott,et al.  Differentiation of low grade non-Hodgkin's lymphoma by digital image processing. , 1996, Analytical and quantitative cytology and histology.

[32]  M. N. Kilo,et al.  The utility of flow cytometric immunophenotypic analysis in the distinction of small lymphocytic lymphoma/chronic lymphocytic leukemia from mantle cell lymphoma. , 1996, American journal of clinical pathology.

[33]  H. Müller-Hermelink,et al.  Image analysis detects lineage-specific morphologic markers in leukemic blast cells. , 1996, American journal of clinical pathology.

[34]  G. Vadlamudi,et al.  Leukemic phase of mantle cell lymphoma two case reports and review of the literature. , 1996, Archives of pathology & laboratory medicine.

[35]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[36]  R. Warnke,et al.  A revised European-American classification of lymphoid neoplasms proposed by the International Lymphoma Study Group. A summary version. , 1995, American journal of clinical pathology.

[37]  Myron Flickner,et al.  Query by Image and Video Content , 1995 .

[38]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[39]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[40]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[41]  C. Geisler,et al.  Prognostic importance of flow cytometric immunophenotyping of 540 consecutive patients with B-cell chronic lymphocytic leukemia. , 1991, Blood.

[42]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[43]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[44]  H. Harms,et al.  Segmentation of stained blood cell images measured at high scanning density with high magnification and high numerical aperture optics. , 1986, Cytometry.

[45]  A. H. Levy,et al.  Computers and videodiscs in pathology education: ECLIPS as an example of one approach. , 1986, Human pathology.

[46]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[47]  C. Coltman,et al.  Reproducibility of the French‐American‐British classification of acute Leukemia: The southwest oncology group experience , 1985, American journal of hematology.

[48]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[49]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.

[50]  Anthony P. Lucido Software Systems for Computer Graphics , 1976, Computer.

[51]  David G. Stork,et al.  Pattern Classification , 1973 .

[52]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[53]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.