Visual analytics for supply network management: System design and evaluation

We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities. Supply network scale, scope, and complexity strain managers' cognitive capacity.Visual analytics augments and amplifies managers' supply network intelligence.We propose a visual analytic framework for supply network management.System incorporates multiple interactive visualizations and predictive analytics.Multi-phase evaluations reveal significant utility and usefulness of our system.

[1]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.

[2]  E. Powell Robinson,et al.  Complexity Factors and Intuition-based Methods for Facility Network Design , 1997 .

[3]  R. Kapuściński,et al.  Value of Information in Capacitated Supply Chains , 1999 .

[4]  James F. Courtney,et al.  Decision making and knowledge management in inquiring organizations: toward a new decision-making paradigm for DSS , 2001, Decis. Support Syst..

[5]  Rahul C. Basole,et al.  Coopetition and convergence in the ICT ecosystem , 2015 .

[6]  Marcus A. Bellamy,et al.  The influence of supply network structure on firm innovation , 2014 .

[7]  Paul van Beek,et al.  Modelling and simulating multi-echelon food systems , 2000, Eur. J. Oper. Res..

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Sean P. Willems,et al.  Technical Note - Optimizing Strategic Safety Stock Placement in General Acyclic Networks , 2011, Oper. Res..

[10]  Martin J. Eppler,et al.  Visual Strategizing: The Systematic Use of Visualization in the Strategic-Planning Process , 2009 .

[11]  Thomas Y. Choi,et al.  Supply networks and complex adaptive systems: Control versus emergence , 2001 .

[12]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[13]  T. Davenport Competing on analytics. , 2006, Harvard business review.

[14]  Thomas Jakobsen,et al.  Advanced Character Physics , 2003 .

[15]  Magnus Boman,et al.  Implementing an agent trade server , 2003, Decis. Support Syst..

[16]  Anthony C. Robinson,et al.  Reflections on ‘ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps’ , 2017 .

[17]  Charles H. Fine CLOCKSPEED‐BASED STRATEGIES FOR SUPPLY CHAIN DESIGN1 , 2009 .

[18]  Veda C. Storey,et al.  Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..

[19]  John T. Stasko,et al.  Visual Analytics for Converging-Business-Ecosystem Intelligence , 2012, IEEE Computer Graphics and Applications.

[20]  Pandu R. Tadikamalla,et al.  A decision support system for managing inventory at GlaxoSmithKline , 2008, Decis. Support Syst..

[21]  Iris Vessey,et al.  Cognitive Fit: A Theory‐Based Analysis of the Graphs Versus Tables Literature* , 1991 .

[22]  Dennis F. Galletta,et al.  Cognitive Fit: An Empirical Study of Information Acquisition , 1991, Inf. Syst. Res..

[23]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[24]  Chris North,et al.  Information Visualization , 2008, Lecture Notes in Computer Science.

[25]  Alex Pentland,et al.  Big Data and Management , 2014 .

[26]  Rahul C. Basole,et al.  Visualization of Innovation in Global Supply Chain Networks , 2016, Decis. Sci..

[27]  John Lim,et al.  Decision support for online group negotiation: Design, implementation, and efficacy , 2012, Decis. Support Syst..

[28]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[29]  Devi R. Gnyawali,et al.  Co-opetition between giants: Collaboration with competitors for technological innovation , 2011 .

[30]  Jean-Daniel Fekete,et al.  Melange: space folding for multi-focus interaction , 2008, CHI.

[31]  Steven Orla Kimbrough,et al.  Computers play the beer game: can artificial agents manage supply chains? , 2002, Decis. Support Syst..

[32]  Hsing Kenneth Cheng,et al.  An empirical study of mobile commerce in insurance industry: Task-technology fit and individual differences , 2007, Decis. Support Syst..

[33]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[34]  Radhika Santhanam,et al.  Emergency management information systems: Could decision makers be supported in choosing display formats? , 2012, Decis. Support Syst..

[35]  Mitchell M. Tseng,et al.  The impacts of RFID implementation on reducing inventory inaccuracy in a multi-stage supply chain , 2015 .

[36]  Rahul C. Basole,et al.  Multilevel Simulations of Health Delivery Systems: A Prospective Tool for Policy, Strategy, Planning, and Management , 2012 .

[37]  Geert-Jan van Houtum,et al.  Improving Supply Chain Performance: Real-Time Demand Information and Flexible Deliveries , 2010, Manuf. Serv. Oper. Manag..

[38]  Adam Fadlalla,et al.  Business information visualization intellectual contributions: An integrative framework of visualization capabilities and dimensions of visual intelligence , 2016, Decis. Support Syst..

[39]  Erran Carmel,et al.  The Effectiveness of Different Representations for Managerial Problem Solving: Comparing Tables and Maps , 1997 .

[40]  S. Strogatz Exploring complex networks , 2001, Nature.

[41]  Martin Wattenberg,et al.  Visualizing the stock market , 1999, CHI Extended Abstracts.

[42]  Christer Carlsson,et al.  Past, present, and future of decision support technology , 2002, Decis. Support Syst..

[43]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[44]  Rahul C. Basole Visualization of interfirm relations in a converging mobile ecosystem , 2008, 2008 7th International Conference on Mobile Business.

[45]  Rahul C. Basole,et al.  Visual analysis of supply network risks: Insights from the electronics industry , 2014, Decis. Support Syst..

[46]  R. Brent Gallupe,et al.  Building and evaluating ESET: A tool for assessing the support given by an enterprise system to supply chain management , 2015, Decis. Support Syst..

[47]  Peter Trkman,et al.  The impact of business analytics on supply chain performance , 2010, Decis. Support Syst..

[48]  Wen-Yau Liang,et al.  Agent-based demand forecast in multi-echelon supply chain , 2006, Decis. Support Syst..

[49]  Frank Y. Chen,et al.  Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information.: The Impact of Forecasting, Lead Times, and Information. , 2000 .

[50]  Erik Brynjolfsson,et al.  Big data: the management revolution. , 2012, Harvard business review.

[51]  Leon F. McGinnis,et al.  Models of Complex Enterprise Networks , 2011 .

[52]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[53]  Rahul C. Basole,et al.  Network analysis of supply chain systems: A systematic review and future research , 2013, Syst. Eng..

[54]  Matthias Trier,et al.  Research Note - Towards Dynamic Visualization for Understanding Evolution of Digital Communication Networks , 2008, Inf. Syst. Res..

[55]  Beatriz Sousa Santos,et al.  A decision-support tool for a capacitated location-routing problem , 2008, Decis. Support Syst..

[56]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[57]  Durk-Jouke van der Zee,et al.  A Modeling Framework for Supply Chain Simulation: Opportunities for Improved Decision Making , 2005, Decis. Sci..

[58]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[59]  David L. Olson,et al.  The impact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) perspective , 2014, Decis. Support Syst..

[60]  Thomas Y. Choi,et al.  The Supply Base and Its Complexity: Implications For Transaction Costs, Risks, Responsiveness, and Innovation , 2006 .

[61]  René Bañares-Alcántara,et al.  A new integrated tool for complex decision making: Application to the UK energy sector , 2013, Decis. Support Syst..

[62]  Hakan Yildiz,et al.  Reliable Supply Chain Network Design , 2016, Decis. Sci..

[63]  Alison Parkes,et al.  The effect of task-individual-technology fit on user attitude and performance: An experimental investigation , 2013, Decis. Support Syst..

[64]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[65]  Leslie P. Willcocks,et al.  Introduction to the special issue on decision support systems , 2005, J. Inf. Technol..

[66]  Rahul C. Basole,et al.  Bicentric diagrams: Design and applications of a graph-based relational set visualization technique , 2016, Decis. Support Syst..

[67]  Ben Shneiderman,et al.  Using Treemaps to Visualize the Analytic Hierarchy Process , 1995, Inf. Syst. Res..

[68]  John T. Stasko,et al.  The Science of Interaction , 2009, Inf. Vis..

[69]  Leon F. McGinnis,et al.  Visual Analytics for Early-Phase Complex Engineered System Design Support , 2015, IEEE Computer Graphics and Applications.

[70]  John T. Stasko,et al.  Value-driven evaluation of visualizations , 2014, BELIV.

[71]  John T. Stasko,et al.  Understanding Interfirm Relationships in Business Ecosystems with Interactive Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[72]  Sean P. Willems,et al.  Data Set - Real-World Multiechelon Supply Chains Used for Inventory Optimization , 2008, Manuf. Serv. Oper. Manag..

[73]  Jukka Huhtamäki,et al.  Understanding Business Ecosystem Dynamics: A Data-Driven Approach , 2015, TMIS.

[74]  D. Sterman,et al.  Misperceptions of Feedback in a Dynamic Decision Making Experiment , 1989 .

[75]  T. Davenport,et al.  Make better decisions. , 2009, Harvard business review.

[76]  Rahul C. Basole,et al.  Supply Network Structure, Visibility, and Risk Diffusion: A Computational Approach , 2014, Decis. Sci..

[77]  M. Bengtsson,et al.  ”Coopetition” in Business Networks—to Cooperate and Compete Simultaneously , 2000 .