The Traveling Salesman
暂无分享,去创建一个
[1] Nelson Maculan,et al. A lower bound for the shortest Hamiltonean path in directed graphs , 1991 .
[2] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[3] Mark H. Karwan,et al. An Optimal Algorithm for the Orienteering Tour Problem , 1992, INFORMS J. Comput..
[4] I ScottKirkpatrick. Optimization by Simulated Annealing: Quantitative Studies , 1984 .
[5] Godfried T. Toussaint,et al. A historical note on convex hull finding algorithms , 1985, Pattern Recognit. Lett..
[6] C. Evertsz,et al. A Laplacian Walk for the Travelling Salesman , 1988 .
[7] M. Padberg,et al. Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .
[8] G. Reinelt,et al. Optimal control of plotting and drilling machines: A case study , 1991, ZOR Methods Model. Oper. Res..
[9] Bernhard Korte. Applications of Combinatorial Optimization in the Design, Layout and Production of Computers , 1990, Modelling the Innovation.
[10] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[11] David S. Johnson,et al. Local Optimization and the Traveling Salesman Problem , 1990, ICALP.
[12] Kavindra Malik,et al. A dual ascent algorithm for the 1-tree relaxation of the symmetric traveling salesman problem , 1990 .
[13] Edward W. Felten,et al. Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..
[14] Richard M. Karp,et al. The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..
[15] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[16] Brian W. Kernighan,et al. An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..
[17] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[18] Gerald L. Thompson,et al. An Exact Two-Matching Based Branch and Bound Algorithm for the Symmetric Traveling Salesman Problem , 1991 .
[19] Jacobus Antonius Adelbertus van der Veen. Solvable cases of the traveling salesman problem with various objective functions , 1992 .
[20] Martin Grötschel,et al. Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..
[21] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[22] F Margot,et al. Quick updates for p-opt TSP heuristics , 1992, Oper. Res. Lett..
[23] R. Jonker,et al. A branch and bound algorithm for the symmetric traveling salesman problem based on the 1-tree relaxation , 1982 .
[24] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[25] Jan Karel Lenstra,et al. Some Simple Applications of the Travelling Salesman Problem , 1975 .
[26] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[27] Thomas Ottmann,et al. Algorithmen und Datenstrukturen , 1990, Reihe Informatik.
[28] Richard H. Warren,et al. Special cases of the traveling salesman problem , 1994 .
[29] Teofilo F. Gonzalez,et al. P-Complete Approximation Problems , 1976, J. ACM.
[30] Gerhard Reinelt,et al. TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..
[31] Heinz Mühlenbein,et al. Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..
[32] Michael Jünger,et al. Practical problem solving with cutting plane algorithms in combinatorialoptimization , 1993, Combinatorial Optimization.
[33] Roy E. Marsten,et al. Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..
[34] Giovanni Rinaldi,et al. The graphical relaxation: A new framework for the symmetric traveling salesman polytope , 1993, Math. Program..
[35] Donald L. Miller,et al. Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.
[36] Jean-Yves Potvin,et al. THE TRAVELING SALESMAN PROBLEM: A NEURAL NETWORK PERSPECTIVE , 1993 .
[37] Christel Kemke,et al. Der Neuere Konnektionismus , 1988, Inform. Spektrum.
[38] A. Volgenant,et al. Technical Note - An Improved Transformation of the Symmetric Multiple Traveling Salesman Problem , 1988, Oper. Res..
[39] John D. Litke,et al. An improved solution to the traveling salesman problem with thousands of nodes , 1984, CACM.
[40] Robert E. Tarjan,et al. Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.
[41] M. Iri,et al. Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .
[42] P. Rujan. Searching for optimal configurations by simulated tunneling , 1988 .
[43] David P. Williamson,et al. Analyzing the Held-Karp TSP Bound: A Monotonicity Property with Application , 1990, Inf. Process. Lett..
[44] Gerhard Reinelt,et al. Traveling salesman problem , 2012 .
[45] Daniel J. Rosenkrantz,et al. An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..
[46] Timothy J. Lowe,et al. The Product Matrix Traveling Salesman Problem: An Application and Solution Heuristic , 1987, Oper. Res..
[47] Martin Grötschel,et al. Via Minimization with Pin Preassignments and Layer Preference , 1989 .
[48] Giovanni Rinaldi,et al. The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities , 1991, Math. Program..
[49] David G. Kirkpatrick,et al. The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..
[50] Bruce Hajek,et al. A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.
[51] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[52] Richard M. Karp,et al. The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..
[53] T. H. C. Smith,et al. A Lifo Implicit Enumeration Search Algorithm for the Symmetric Traveling Salesman Problem Using Held and Karp's 1-Tree Relaxation , 1977 .
[54] Joseph F. Pekny,et al. A Staged Primal-Dual Algorithm for Finding a Minimum Cost Perfect Two-Matching in an Undirected Graph , 1994, INFORMS J. Comput..
[55] M. V. Wilkes,et al. The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .
[56] Gerald L. Thompson,et al. Lower bounds for the symmetric travelling salesman problem from Lagrangean relaxations , 1990, Discret. Appl. Math..
[57] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, STOC '84.
[58] Kazuo Murota,et al. IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .
[59] R. Prim. Shortest connection networks and some generalizations , 1957 .
[60] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[61] Helga Schramm,et al. Eine Kombination von Bundle- und Trust-region-Verfahren zur Lösung nichtdifferenzierbarer Optimierungsprobleme , 1989 .