The Traveling Salesman

Optimization The traveling salesman is an optimization algorithm The goal is to find a combination of parameters that give the highest or lowest value for a function 2 graph for a function z = f(x,y) what values of x and y give the highest value of f?

[1]  Nelson Maculan,et al.  A lower bound for the shortest Hamiltonean path in directed graphs , 1991 .

[2]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[3]  Mark H. Karwan,et al.  An Optimal Algorithm for the Orienteering Tour Problem , 1992, INFORMS J. Comput..

[4]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[5]  Godfried T. Toussaint,et al.  A historical note on convex hull finding algorithms , 1985, Pattern Recognit. Lett..

[6]  C. Evertsz,et al.  A Laplacian Walk for the Travelling Salesman , 1988 .

[7]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[8]  G. Reinelt,et al.  Optimal control of plotting and drilling machines: A case study , 1991, ZOR Methods Model. Oper. Res..

[9]  Bernhard Korte Applications of Combinatorial Optimization in the Design, Layout and Production of Computers , 1990, Modelling the Innovation.

[10]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[11]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[12]  Kavindra Malik,et al.  A dual ascent algorithm for the 1-tree relaxation of the symmetric traveling salesman problem , 1990 .

[13]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[14]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  Gerald L. Thompson,et al.  An Exact Two-Matching Based Branch and Bound Algorithm for the Symmetric Traveling Salesman Problem , 1991 .

[19]  Jacobus Antonius Adelbertus van der Veen Solvable cases of the traveling salesman problem with various objective functions , 1992 .

[20]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[21]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[22]  F Margot,et al.  Quick updates for p-opt TSP heuristics , 1992, Oper. Res. Lett..

[23]  R. Jonker,et al.  A branch and bound algorithm for the symmetric traveling salesman problem based on the 1-tree relaxation , 1982 .

[24]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[25]  Jan Karel Lenstra,et al.  Some Simple Applications of the Travelling Salesman Problem , 1975 .

[26]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[27]  Thomas Ottmann,et al.  Algorithmen und Datenstrukturen , 1990, Reihe Informatik.

[28]  Richard H. Warren,et al.  Special cases of the traveling salesman problem , 1994 .

[29]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[30]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[31]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[32]  Michael Jünger,et al.  Practical problem solving with cutting plane algorithms in combinatorialoptimization , 1993, Combinatorial Optimization.

[33]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[34]  Giovanni Rinaldi,et al.  The graphical relaxation: A new framework for the symmetric traveling salesman polytope , 1993, Math. Program..

[35]  Donald L. Miller,et al.  Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.

[36]  Jean-Yves Potvin,et al.  THE TRAVELING SALESMAN PROBLEM: A NEURAL NETWORK PERSPECTIVE , 1993 .

[37]  Christel Kemke,et al.  Der Neuere Konnektionismus , 1988, Inform. Spektrum.

[38]  A. Volgenant,et al.  Technical Note - An Improved Transformation of the Symmetric Multiple Traveling Salesman Problem , 1988, Oper. Res..

[39]  John D. Litke,et al.  An improved solution to the traveling salesman problem with thousands of nodes , 1984, CACM.

[40]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[41]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[42]  P. Rujan Searching for optimal configurations by simulated tunneling , 1988 .

[43]  David P. Williamson,et al.  Analyzing the Held-Karp TSP Bound: A Monotonicity Property with Application , 1990, Inf. Process. Lett..

[44]  Gerhard Reinelt,et al.  Traveling salesman problem , 2012 .

[45]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[46]  Timothy J. Lowe,et al.  The Product Matrix Traveling Salesman Problem: An Application and Solution Heuristic , 1987, Oper. Res..

[47]  Martin Grötschel,et al.  Via Minimization with Pin Preassignments and Layer Preference , 1989 .

[48]  Giovanni Rinaldi,et al.  The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities , 1991, Math. Program..

[49]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[50]  Bruce Hajek,et al.  A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[51]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[52]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[53]  T. H. C. Smith,et al.  A Lifo Implicit Enumeration Search Algorithm for the Symmetric Traveling Salesman Problem Using Held and Karp's 1-Tree Relaxation , 1977 .

[54]  Joseph F. Pekny,et al.  A Staged Primal-Dual Algorithm for Finding a Minimum Cost Perfect Two-Matching in an Undirected Graph , 1994, INFORMS J. Comput..

[55]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[56]  Gerald L. Thompson,et al.  Lower bounds for the symmetric travelling salesman problem from Lagrangean relaxations , 1990, Discret. Appl. Math..

[57]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[58]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[59]  R. Prim Shortest connection networks and some generalizations , 1957 .

[60]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[61]  Helga Schramm,et al.  Eine Kombination von Bundle- und Trust-region-Verfahren zur Lösung nichtdifferenzierbarer Optimierungsprobleme , 1989 .