Reachability of weakly nonlinear systems using Carleman linearization

In this article we introduce a solution method for a special class of nonlinear initial-value problems using set-based propagation techniques. The novelty of the approach is that we employ a particular embedding (Carleman linearization) to leverage recent advances of highdimensional reachability solvers for linear ordinary differential equations based on the support function. Using a global error bound for the Carleman linearization abstraction, we are able to describe the full set of behaviors of the system for sets of initial conditions and in dense time.

[1]  Yong Han Kang,et al.  Stability analysis and optimal vaccination of an SIR epidemic model , 2008, Biosyst..

[2]  J. Collado,et al.  Modified Carleman Linearization and its use in oscillators , 2008, 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control.

[3]  Colas Le Guernic Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. (Calcul d'Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire) , 2009 .

[4]  Sriram Sankaranarayanan,et al.  Change-of-bases abstractions for non-linear hybrid systems , 2016 .

[5]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.

[6]  Andreas Rauh,et al.  Carleman Linearization for Control and for State and Disturbance Estimation of Nonlinear Dynamical Processes , 2009 .

[7]  Stanley Bak,et al.  Simulation-Equivalent Reachability of Large Linear Systems with Inputs , 2017, CAV.

[8]  Antoine Girard,et al.  Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs , 2006, HSCC.

[9]  Andrew M. Childs,et al.  Efficient quantum algorithm for dissipative nonlinear differential equations , 2020, Proceedings of the National Academy of Sciences.

[10]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[11]  Amaury Pouly,et al.  Explicit Error Bounds for Carleman Linearization , 2017, ArXiv.

[12]  Marc E. Pfetsch,et al.  Some Algorithmic Problems in Polytope Theory , 2003, Algebra, Geometry, and Software Systems.

[13]  W. Steeb A note on Carleman linearization , 1989 .

[14]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[15]  Xihong Lin,et al.  Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. , 2020, JAMA.

[16]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[18]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[19]  David P. Sanders,et al.  TaylorSeries.jl: Taylor expansions in one and several variables in Julia , 2019, J. Open Source Softw..

[20]  Dongxu Li,et al.  Reachability Analysis of Nonlinear Systems Using Hybridization and Dynamics Scaling , 2020, FORMATS.

[21]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[22]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Brian William Gaude Solving Nonlinear Aeronautical Problems Using the Carleman Linearization Method , 2001 .

[25]  Matthias Althoff,et al.  Combining zonotopes and support functions for efficient reachability analysis of linear systems , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[26]  Bruce H. Krogh,et al.  Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes , 2006, HSCC.

[27]  Antoine Girard,et al.  Set Propagation Techniques for Reachability Analysis , 2021, Annu. Rev. Control. Robotics Auton. Syst..

[28]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[29]  T. Carleman Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .

[30]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[31]  Antonios Armaou,et al.  Fast Moving Horizon Estimation of nonlinear processes via Carleman linearization , 2015, 2015 American Control Conference (ACC).

[32]  A. Germani,et al.  Filtering of Differential Nonlinear Systems via a Carleman Approximation Approach; 44th IEEE Conf. on Decision and Control & European Control Conference (CDC-ECC 2005) , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[34]  Sergiy Bogomolov,et al.  Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices , 2018, HSCC.

[35]  A. Girard,et al.  Reachability analysis of linear systems using support functions , 2010 .

[36]  Meeko M. K. Oishi,et al.  Complexity reduction through a Schur-based decomposition for reachability analysis of linear time-invariant systems , 2011, Int. J. Control.

[37]  Sergiy Bogomolov,et al.  JuliaReach: a toolbox for set-based reachability , 2019, HSCC.

[38]  W. Steeb,et al.  Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra , 2011 .