Scheduling algorithms for modern disk drives

Disk subsystem performance can be dramatically improved by dynamically ordering, or scheduling , pending requests. Via strongly validated simulation, we examine the impact of complex logical-to-physical mappings and large prefetching caches on scheduling effectiveness. Using both synthetic workloads and traces captured from six different user environments, we arrive at three main conclusions: (1) Incorporating complex mapping information into the scheduler provides only a marginal (less than 2%) decrease in response times for seek-reducing algorithms. (2) Algorithms which effectively utilize prefetching disk caches provide significant performance improvements for workloads with read sequentiality. The cyclical scan algorithm (C-LOOK), which always schedules requests in ascending logical order, achieves the highest performance among seek-reducing algorithms for such workloads. (3) Algorithms that reduce overall positioning delays produce the highest performance provided that they recognize and exploit a prefetching cache.