IspC as target for antiinfective drug discovery: synthesis, enantiomeric separation, and structural biology of fosmidomycin thia isosters.

The emergence and spread of multidrug-resistant pathogens are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the synthesis and properties of "reverse" thia analogs of fosmidomycin, which inhibit the first committed enzyme of a metabolic pathway that is essential for the causative agents of tuberculosis and malaria but is absent in the human host. Notably, IspC displays a high level of enantioselectivity for an α-substituted fosmidomycin derivative.

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  A. Bacher,et al.  α-Substituted β-oxa isosteres of fosmidomycin: synthesis and biological evaluation. , 2012, Journal of medicinal chemistry.

[3]  W. L. Jorgensen,et al.  Methyl effects on protein-ligand binding. , 2012, Journal of medicinal chemistry.

[4]  G. McFadden,et al.  Plasmodium falciparum apicoplast drugs: targets or off-targets? , 2012, Chemical reviews.

[5]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[6]  Karin Brücher Synthese und biologische Evaluation von inversen alpha-substituierten, beta-oxa-isosteren Fosmidomycin-Analoga und Derivaten mit Benzamid-Teilstruktur , 2012 .

[7]  Christoph T. Behrendt Synthese und biologische Evaluation inverser alpha-Aryl-substituierter Fosmidomycin-Analoga , 2012 .

[8]  W. Eisenreich,et al.  Reverse fosmidomycin derivatives against the antimalarial drug target IspC (Dxr). , 2011, Journal of medicinal chemistry.

[9]  Martin Lindh,et al.  Design, synthesis, and X-ray crystallographic studies of α-aryl substituted fosmidomycin analogues as inhibitors of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase. , 2011, Journal of medicinal chemistry.

[10]  Y. Kitade,et al.  Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum , 2011, Scientific reports.

[11]  B. Prasad,et al.  Inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase by lipophilic phosphonates: SAR, QSAR, and crystallographic studies. , 2011, Journal of medicinal chemistry.

[12]  W. Eisenreich,et al.  Synthesis and Antiplasmodial Activity of Highly Active Reverse Analogues of the Antimalarial Drug Candidate Fosmidomycin , 2010, ChemMedChem.

[13]  S. van Calenbergh,et al.  Synthesis and evaluation of alpha-halogenated analogues of 3-(acetylhydroxyamino)propylphosphonic acid (FR900098) as antimalarials. , 2010, Journal of medicinal chemistry.

[14]  A. Vaughan,et al.  That Was Then But This Is Now: Malaria Research in the Time of an Eradication Agenda , 2010, Science.

[15]  T. Wells,et al.  When is enough enough? The need for a robust pipeline of high-quality antimalarials. , 2010, Discovery medicine.

[16]  J. Wiesner,et al.  Synthesis of β- and γ-oxa isosteres of fosmidomycin and FR900098 as antimalarial candidates , 2008 .

[17]  J. Wiesner,et al.  Synthesis of beta- and gamma-oxa isosteres of fosmidomycin and FR900098 as antimalarial candidates. , 2008, Bioorganic & medicinal chemistry.

[18]  B. Bergmann,et al.  α-Phenylethyl Substituted Bis(pivaloyloxymethyl) Ester Analogues of Fosmidomycin and FR900098 , 2007 .

[19]  Nidhi Singh,et al.  Targeting the methyl erythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) enzyme. , 2007, Current pharmaceutical design.

[20]  Y. Ershov 2-C-methylerythritol phosphate pathway of isoprenoid biosynthesis as a target in identifying new antibiotics, herbicides, and immunomodulators: A review , 2007, Applied Biochemistry and Microbiology.

[21]  B. Bergmann,et al.  Arylmethyl substituted derivatives of Fosmidomycin: synthesis and antimalarial activity. , 2006, European journal of medicinal chemistry.

[22]  B. Bergmann,et al.  Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of Fosmidomycin and FR900098. , 2006, Bioorganic & medicinal chemistry.

[23]  J. Wiesner,et al.  Synthesis of α-Substituted Fosmidomycin Analogues as Highly Potent Plasmodium falciparum Growth Inhibitors. , 2006 .

[24]  B. Mordmüller,et al.  Malarial parasites vs. antimalarials: never-ending rumble in the jungle. , 2006, Current molecular medicine.

[25]  W. Eisenreich,et al.  Isoprenoid biosynthetic pathways as anti-infective drug targets. , 2005, Biochemical Society transactions.

[26]  Harald Noedl,et al.  Simple Histidine-Rich Protein 2 Double-Site Sandwich Enzyme-Linked Immunosorbent Assay for Use in Malaria Drug Sensitivity Testing , 2005, Antimicrobial Agents and Chemotherapy.

[27]  J. Wiesner,et al.  Alkoxycarbonyloxyethyl Ester Prodrugs of FR900098 with Improved In Vivo Antimalarial Activity , 2005, Archiv der Pharmazie.

[28]  W. Trager,et al.  Human Malaria Parasites in Continuous Culture , 2005 .

[29]  A. Hemmerlin,et al.  Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase. , 2005, The Biochemical journal.

[30]  H. Jomaa,et al.  Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. , 2004, The Journal of infectious diseases.

[31]  M. Rohmer,et al.  Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs. , 2004, Current opinion in investigational drugs.

[32]  Robert Huber,et al.  Structural Basis of Fosmidomycin Action Revealed by the Complex with 2-C-Methyl-d-erythritol 4-phosphate Synthase (IspC) , 2003, The Journal of Biological Chemistry.

[33]  J. Wiesner,et al.  Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. , 2001, Bioorganic & medicinal chemistry letters.

[34]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[35]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[36]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[37]  R. Hoffman,et al.  A Facile Preparation of N-(Isopropoxyalkyl) Amides by Generation and Trapping of N-Acyliminium Ions from Ionization-Rearrangement Reactions of N-Triflyloxy Amides , 1994 .

[38]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[39]  M. Casadei,et al.  Electrochemical studies on haloamides. III: Haloacetamides and haloacetohydroxamates , 1992 .

[40]  M. Casadei,et al.  Electrochemical studies on haloamides. Part 3. Haloacetamides and halo-acetohydroxamates , 1992 .

[41]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[42]  F. De Santis,et al.  Pharmacokinetic evaluation of fosmidomycin, a new phosphonic acid antibiotic. , 1987, Chemioterapia : international journal of the Mediterranean Society of Chemotherapy.

[43]  X. Creary,et al.  The Nature of Cationic Intermediates Derived from α-Thiophosphoryl and α-Thiocarbonyl Mesylates. , 1986 .

[44]  X. Creary,et al.  Nature of cationic intermediates derived from .alpha.-thiophosphoryl and .alpha.-thiocarbonyl mesylates. Neighboring thiophosphoryl and thiocarbonyl participation , 1986 .

[45]  T. Konishi,et al.  Fosmidomycin: a new phosphonic acid antibiotic. Part I: Phase I tolerance studies. , 1985, International journal of clinical pharmacology, therapy, and toxicology.

[46]  M. Nishida,et al.  Pharmacokinetics of fosmidomycin, a new phosphonic acid antibiotic , 1982, Antimicrobial Agents and Chemotherapy.

[47]  M. Okuhara,et al.  Studies on new phosphonic acid antibiotics. III. Isolation and characterization of FR-31564, FR-32863 and FR-33289. , 1980, The Journal of antibiotics.

[48]  M. Okuhara,et al.  Studies on new phosphonic acid antibiotics. IV. Structure determination of FR-33289, FR-31564 and FR-32863. , 1980, The Journal of antibiotics.

[49]  A. Zatorski,et al.  Organosulfur compounds. 23. Addition of elemental sulfur to phosphonate carbanions and its application for synthesis of .alpha.-phosphoryl organosulfur compounds. Synthesis of aromatic ketones , 1979 .

[50]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[51]  C. McKenna,et al.  The facile dealkylation of phosphonic acid dialkyl esters by bromotrimethylsilane , 1977 .