Multichannel band-controlled deconvolution based on a data-driven structural regularization

Sparse deconvolution methods frequently invert for subsurface reflection impulses and adopt a trace-by-trace processing pattern. However, following this approach causes unreliability of the estimated reflectivity due to the nonuniqueness of the inverse problem, the poor spatial continuity of structures in the reconstructed reflectivity section, and the suppression on the reflection signals with small amplitudes. We have developed a structurally constrained multichannel band-controlled deconvolution (SC-MBCD) algorithm to alleviate these three issues. The algorithm inverts for a high-resolution seismogram rather than the full-band reflectivity series, thereby reducing the multiple solutions in the inversion and enhancing the reliability of processing results. We also exploited a structural constraint term to guarantee the spatial continuity of the structures, and we enhanced the relatively weak signals. The reflection structure characteristics, defined and extracted from the observed stacked seismic data, are the core of the structural regularization item. We solved the cost function of the SC-MBCD by the alternating direction method of multipliers algorithm. Synthetic model and field data examples demonstrate the rationality of SC-MBCD and confirmed that the algorithm can provide a better inversion result than the conventional sparse spike inversion in terms of retrieving weak reflection events and guaranteeing stratal continuities.

[1]  John P. Castagna,et al.  Layer-thickness determination and stratigraphic interpretation using spectral inversion : Theory and application , 2008 .

[2]  Sanyi Yuan,et al.  Spectral sparse Bayesian learning reflectivity inversion , 2013 .

[3]  Y. Y. Ma,et al.  Multitrace Sparse-spike Deconvolution Regularized by Spatial Derivatives , 2017 .

[4]  E. Berg,et al.  New insights into one-norm solvers from the Pareto curve , 2008 .

[5]  Mauricio D. Sacchi,et al.  Sparse multichannel blind deconvolution , 2014 .

[6]  Vivek K. Goyal,et al.  Transform-domain sparsity regularization for inverse problems in geosciences , 2009, GEOPHYSICS.

[7]  Eike Rietsch,et al.  Euclid and the art of wavelet estimation, Part I: Basic algorithm for noise-free data , 1997 .

[8]  T. Ulrych,et al.  Autoregressive recovery of the acoustic impedance , 1983 .

[9]  Ali Gholami,et al.  A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery , 2016 .

[10]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[11]  T. Ulrych,et al.  MINIMUM ENTROPY DECONVOLUTION WITH AN EXPONENTIAL TRANSFORMATION , 1979 .

[12]  Guofa Li,et al.  Frequency-domain multitrace band-limited sparsity deconvolution , 2017 .

[13]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[14]  D. Oldenburg,et al.  A comprehensive study of including structural orientation information in geophysical inversions , 2009 .

[15]  Ali Gholami,et al.  Nonlinear multichannel impedance inversion by total-variation regularization , 2015 .

[16]  Mauricio D. Sacchi,et al.  Reweighting strategies in seismic deconvolution , 1997 .

[17]  P. Riel,et al.  Lp-NORM DECONVOLUTION1 , 1990 .

[18]  Mauricio D. Sacchi,et al.  High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution , 2011 .

[19]  Mrinal K. Sen,et al.  Choice of regularization weight in basis pursuit reflectivity inversion , 2015 .

[20]  Adam Pidlisecky,et al.  Structurally constrained impedance inversion , 2016 .

[21]  D. Oldenburg,et al.  Recovery of the acoustic impedance from reflection seismograms , 1983 .

[22]  Tadeusz J. Ulrych,et al.  A Bayes tour of inversion: A tutorial , 2001 .

[23]  J. Claerbout,et al.  Incorporating geologic information into reflection tomography , 2004 .

[24]  Mauricio D. Sacchi,et al.  Bayesian linearized seismic inversion with locally varying spatial anisotropy , 2013 .

[25]  A. J. Berkhout,et al.  LEAST‐SQUARES INVERSE FILTERING AND WAVELET DECONVOLUTION , 1977 .

[26]  Tadeusz J. Ulrych,et al.  The Old and the New in Seismic Deconvolution and Wavelet ESTIMATION , 1977 .

[27]  Peyman Milanfar,et al.  Robust Multichannel Blind Deconvolution via Fast Alternating Minimization , 2012, IEEE Transactions on Image Processing.

[28]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[29]  Mauricio D. Sacchi,et al.  Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Sanyi Yuan,et al.  Simultaneous multitrace impedance inversion with transform-domain sparsity promotionStructures — Exploring impedance inversion , 2015 .

[31]  Adam Pidlisecky,et al.  Multitrace impedance inversion with lateral constraints , 2015 .

[32]  Mauricio D. Sacchi,et al.  A Fast and Automatic Sparse Deconvolution in the Presence of Outliers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[33]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[34]  W. Schneider,et al.  Generalized linear inversion of reflection seismic data , 1983 .

[35]  Sanyi Yuan,et al.  Random noise reduction using Bayesian inversion , 2012 .

[36]  Mauricio D. Sacchi,et al.  Fast 3D Blind Seismic Deconvolution via Constrained Total Variation and GCV , 2013, SIAM J. Imaging Sci..

[37]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..