Electrical breakdown of multilayer MoS2 field-effect transistors with thickness-dependent mobility.

We report on the experimental investigation and modeling of electrical breakdown in multilayer (a few to tens of nanometers thick) molybdenum disulfide (MoS2) field-effect transistors (FETs). By measuring MoS2 devices ranging from 5.7 nm to 77 nm in thicknesses, we achieve a breakdown current of 1.2 mA, mobility of 42 cm(2) V(-1) s(-1), and on/off current ratio IOn/IOff ∼ 10(7). Through measurements and simulations, we find the dependence of the breakdown current limit on MoS2 thicknesses, channel lengths and conductivities. We also explore, both experimentally and analytically, the effects of different device parameters upon carrier mobility, which is directly related to the current carrying capacity. The results suggest that, compared to single-layer devices, multilayer MoS2 FETs could be advantageous for circuit applications requiring higher carrier mobility and power handling capacities.

[1]  Gotthard Seifert,et al.  Defect-induced conductivity anisotropy in MoS2monolayers , 2013, 1311.0474.

[2]  Eric Pop,et al.  Thermally limited current carrying ability of graphene nanoribbons. , 2011, Physical review letters.

[3]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[4]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[5]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[6]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[7]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[8]  Xiaogan Liang,et al.  MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. , 2013, ACS nano.

[9]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[10]  M. Stroscio,et al.  Polar optical-phonon scattering in three- and two-dimensional electron gases , 1995 .

[11]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[12]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[13]  T. Liu,et al.  Mechanically modulated tunneling resistance in monolayer MoS2 , 2013, 1311.3608.

[14]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[15]  H. Wen,et al.  Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. , 2013, Nano letters.

[16]  P. D. Ye,et al.  $\hbox{MoS}_{2}$ Dual-Gate MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Top-Gate Dielectric , 2011, IEEE Electron Device Letters.

[17]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[18]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[19]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[20]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[21]  K. Mak,et al.  Measurement of the thermal conductance of the graphene/SiO2 interface , 2010 .

[22]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[23]  J. Appenzeller,et al.  Screening and interlayer coupling in multilayer MoS2 , 2013 .

[24]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[25]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[26]  Jian-Hao Chen,et al.  Defect scattering in graphene. , 2009, Physical review letters.

[27]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[28]  P. Hopkins Effects of electron-boundary scattering on changes in thermoreflectance in thin metal films undergoing intraband excitations , 2009 .

[29]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[30]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[31]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[32]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[33]  T. Ren,et al.  A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction , 2013 .

[34]  Mengwei Si,et al.  Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. , 2014, ACS nano.

[35]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[36]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[37]  Eric Pop,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[38]  Byung Jin Cho,et al.  Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors , 2013, 1301.4527.

[39]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[40]  Tokura,et al.  Electron scattering by steps in a vicinal heterointerface. , 1996, Physical review. B, Condensed matter.

[41]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.