Multiple Wavefront Shaping by Metasurface Based on Mixed Random Antenna Groups

Photonic gradient metasurfaces are ultrathin electromagnetic wave-molding metamaterials that provide a route for realizing flat optics. However, the up-to-date metasurface design, manifested by imprinting the required phase profile for a single, on-demand light manipulation functionality, is not compatible with the desired goal of multifunctional flat optics. Here, we report on a generic concept to control multifunctional optics by disordered (random) gradient metasurfaces with a custom-tailored geometric phase. This approach combines the peculiar ability of random patterns to support an extraordinary information capacity and the polarization helicity control in the geometric phase mechanism, simply implemented in a two-dimensional structured matter by imprinting optical antenna patterns. By manipulating the local orientations of the nanoantennas, we generate multiple wavefronts with different functionalities via mixed random antenna groups, where each group controls a different phase function. Disordered...

[1]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[2]  Novotny,et al.  Local Excitation, Scattering, and Interference of Surface Plasmons. , 1996, Physical review letters.

[3]  V. Shalaev Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films , 1999 .

[4]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[5]  X. Jiao,et al.  Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement. , 2007, Optics express.

[6]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[7]  Erez Hasman,et al.  Spin-controlled plasmonics via optical Rashba effect , 2013 .

[8]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[9]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[10]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[11]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[12]  Kristina M. Johnson,et al.  Maximized photorefractive holographic storage , 1991 .

[13]  E. Hasman,et al.  Rashba-type plasmonic metasurface. , 2013, Optics letters.

[14]  M. Segev,et al.  Anderson localization of light , 2009, Nature Photonics.

[15]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[16]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[17]  R. Felici Surface X‐Ray Diffraction , 2012 .

[18]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[19]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[20]  Wolf,et al.  Weak localization and coherent backscattering of photons in disordered media. , 1985, Physical review letters.

[21]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[22]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[23]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[24]  E. Hasman,et al.  Spin-dependent plasmonics based on interfering topological defects , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[25]  D. Wiersma,et al.  Photon management in two-dimensional disordered media , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[26]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[27]  J. Goodman Some fundamental properties of speckle , 1976 .

[28]  A A Friesem,et al.  On the limits of optical interconnects. , 1992, Applied optics.

[29]  Jean-Jacques Greffet,et al.  Surface plasmon Fourier optics , 2009, 0902.1926.

[30]  E Hasman,et al.  Computer-generated space-variant polarization elements with subwavelength metal stripes. , 2001, Optics letters.

[31]  Nikolay I. Zheludev,et al.  Localization of electromagnetic fields in disordered metamaterials , 2012 .

[32]  Mark I. Stockman,et al.  Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters , 1997 .

[33]  A. Mosk,et al.  Universal optimal transmission of light through disordered materials. , 2008, Physical review letters.

[34]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[35]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[36]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[37]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[38]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  J. Pendry,et al.  Maximal fluctuations — A new phenomenon in disordered systems , 1990 .

[40]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[41]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[42]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[43]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[44]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.