Single-molecule site-specific detection of protein phosphorylation with a nanopore

We demonstrate single-molecule, site-specific detection of protein phosphorylation with protein nanopore technology. A model protein, thioredoxin, was phosphorylated at two adjacent sites. Analysis of the ionic current amplitude and noise, as the protein unfolds and moves through an α-hemolysin pore, enables the distinction between unphosphorylated, monophosphorylated and diphosphorylated variants. Our results provide a step toward nanopore proteomics.

[1]  K. Geoghegan,et al.  Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. , 1992, Bioconjugate chemistry.

[2]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[3]  J. Tam,et al.  Orthogonal ligation strategies for peptide and protein. , 1999, Biopolymers.

[4]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[5]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[6]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[7]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[8]  Stefan Howorka,et al.  Stochastic detection of monovalent and bivalent protein-ligand interactions. , 2004, Angewandte Chemie.

[9]  A. Görg,et al.  Current two‐dimensional electrophoresis technology for proteomics , 2004, Proteomics.

[10]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[11]  Li-Qun Gu,et al.  Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. , 2005, Chemistry & biology.

[12]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[13]  H. Bayley,et al.  Stochastic detection of enantiomers. , 2006, Journal of the American Chemical Society.

[14]  Neel S. Joshi,et al.  N-terminal protein modification through a biomimetic transamination reaction. , 2006, Angewandte Chemie.

[15]  H. Bayley,et al.  Sequencing single molecules of DNA. , 2006, Current opinion in chemical biology.

[16]  H. Bayley,et al.  Formation of a chiral center and pyrimidal inversion at the single-molecule level. , 2007, Angewandte Chemie.

[17]  Wei Gu,et al.  SnapShot: p53 Posttranslational Modifications , 2008, Cell.

[18]  H. Bayley,et al.  Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. , 2008, Journal of the American Chemical Society.

[19]  William L. Hwang,et al.  Droplet interface bilayers. , 2008, Molecular bioSystems.

[20]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[21]  Scott L Cockroft,et al.  A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. , 2008, Journal of the American Chemical Society.

[22]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[23]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[24]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[25]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[26]  Benjamin W. Thuronyi,et al.  Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. , 2010, Journal of the American Chemical Society.

[27]  H. Bayley,et al.  Analysis of single nucleic acid molecules with protein nanopores. , 2010, Methods in enzymology.

[28]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[29]  Mark Akeson,et al.  Replication of Individual DNA Molecules under Electronic Control Using a Protein Nanopore , 2010, Nature nanotechnology.

[30]  W. Gu,et al.  New insights into p53 activation , 2010, Cell Research.

[31]  K. Lieberman,et al.  Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. , 2010, Journal of the American Chemical Society.

[32]  H. Bayley,et al.  Identification of epigenetic DNA modifications with a protein nanopore. , 2010, Chemical communications.

[33]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[34]  S. Cockroft,et al.  Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. , 2010, Angewandte Chemie.

[35]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[36]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[37]  M. Niederweis,et al.  Nucleotide Discrimination with DNA Immobilized in the MspA Nanopore , 2011, PloS one.

[38]  T. Hupp,et al.  How phosphorylation controls p53 , 2011, Cell cycle.

[39]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[40]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[41]  Elizabeth Pennisi,et al.  Genome sequencing. Search for pore-fection. , 2012, Science.

[42]  Sequencing set to alter clinical landscape , 2012, Nature.

[43]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[44]  J. Betton,et al.  Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. , 2012, ACS chemical biology.

[45]  H. Bayley Are we there yet?: Comment on "Nanopores: A journey towards DNA sequencing" by Meni Wanunu. , 2012, Physics of life reviews.

[46]  Hanno Steen,et al.  Post‐translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[47]  Steven A Carr,et al.  Integrated proteomic analysis of post-translational modifications by serial enrichment , 2013, Nature Methods.

[48]  H. Bayley,et al.  Multistep protein unfolding during nanopore translocation. , 2013, Nature nanotechnology.

[49]  Mark Akeson,et al.  Unfoldase-mediated protein translocation through an α-hemolysin nanopore , 2013, Nature Biotechnology.