DAFoam: An Open-Source Adjoint Framework for Multidisciplinary Design Optimization with OpenFOAM

The adjoint method is an efficient approach for computing derivatives that allow gradient-based optimization to handle systems parameterized with a large number of design variables. Despite this ad...

[1]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[2]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[3]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[4]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[5]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[6]  Michael D. Hathaway,et al.  Laser anemometer measurements in a transonic axial-flow fan rotor , 1989 .

[7]  William M. Chan,et al.  Enhancements of a three-dimensional hyperbolic grid generation scheme , 1992 .

[8]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[9]  M. Modest Radiative heat transfer , 1993 .

[10]  B. Mohammadi a New Optimal Shape Design Procedure for Inviscid and Viscous Turbulent Flows , 1997 .

[11]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[12]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[13]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[14]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[15]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[16]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[17]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[18]  Antony Jameson,et al.  Aerodynamic Shape Optimization Using the Adjoint Method , 2003 .

[19]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[20]  W. K. Anderson,et al.  A General and Extensible Unstructured Mesh Adjoint Method , 2005, J. Aerosp. Comput. Inf. Commun..

[21]  T. Pulliam,et al.  Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .

[22]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[23]  Alex Pothen,et al.  What Color Is Your Jacobian? Graph Coloring for Computing Derivatives , 2005, SIAM Rev..

[24]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[25]  E. Nielsen,et al.  Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables , 2005 .

[26]  R. Dwight,et al.  Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization , 2006 .

[27]  D. Mavriplis Discrete Adjoint-Based Approach for Optimization Problems on Three-Dimensional Unstructured Meshes , 2007 .

[28]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[29]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[30]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[31]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[32]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[33]  Li He,et al.  Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application , 2010 .

[34]  Jason E. Hicken,et al.  A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..

[35]  Joaquim R. R. A. Martins,et al.  Structural and Multidisciplinary Optimization Manuscript No. Pyopt: a Python-based Object-oriented Framework for Nonlinear Constrained Optimization , 2022 .

[36]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[37]  Joaquim R. R. A. Martins,et al.  Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes , 2012, Structural and Multidisciplinary Optimization.

[38]  Uwe Naumann,et al.  A Discrete Adjoint Model for OpenFOAM , 2013, ICCS.

[39]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[40]  M. Modest Inverse Radiative Heat Transfer , 2022, Radiative Heat Transfer.

[41]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[42]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[43]  Darrell Guillaume,et al.  Computational and Experimental Design of a Fixed-Wing UAV , 2015 .

[44]  Thomas A. Reist,et al.  Drag Minimization Based on the Navier–Stokes Equations Using a Newton–Krylov Approach , 2015 .

[45]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[46]  Tim A. Albring,et al.  Efficient Aerodynamic Design using the Discrete Adjoint Method in SU2 , 2016 .

[47]  K. Giannakoglou,et al.  Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications , 2016 .

[48]  J. Alonso,et al.  SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[49]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of Common Research Model Wing–Body–Tail Configuration , 2016 .

[50]  Zhenping Feng,et al.  Study on continuous adjoint optimization with turbulence models for aerodynamic performance and heat transfer in turbomachinery cascades , 2017 .

[51]  Joaquim R. R. A. Martins,et al.  High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil , 2017 .

[52]  Dhabaleswar K. Panda,et al.  Stampede 2: The Evolution of an XSEDE Supercomputer , 2017, PEARC.

[53]  Graeme J. Kennedy,et al.  An evaluation of constraint aggregation strategies for wing box mass minimization , 2017 .

[54]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[55]  K. Giannakoglou,et al.  The continuous adjoint method for shape optimization in Conjugate Heat Transfer problems with turbulent incompressible flows , 2018, Applied Thermal Engineering.

[56]  Jens-Dominik Mueller,et al.  STAMPS: a Finite-Volume Solver Framework for Adjoint Codes Derived with Source-Transformation AD , 2018, 2018 Multidisciplinary Analysis and Optimization Conference.

[57]  Niklas Kühl,et al.  Adjoint volume-of-fluid approaches for the hydrodynamic optimisation of ships , 2018 .

[58]  Joaquim R. R. A. Martins,et al.  Coupled Aeropropulsive Design Optimization of a Boundary Layer Ingestion Propulsor , 2018 .

[59]  Joaquim R. R. A. Martins,et al.  An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM , 2018 .

[60]  Timothy R. Brooks,et al.  Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings , 2018, AIAA Journal.

[61]  Joaquim R. R. A. Martins,et al.  Component-Based Geometry Manipulation for Aerodynamic Shape Optimization with Overset Meshes , 2018 .

[62]  C. Mader,et al.  Modeling Boundary Layer Ingestion Using a Coupled Aeropropulsive Analysis , 2018 .

[63]  Joaquim R. R. A. Martins,et al.  Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization , 2018, Aerospace Science and Technology.

[64]  Joaquim R. R. A. Martins,et al.  A Computational Architecture for Coupling Heterogeneous Numerical Models and Computing Coupled Derivatives , 2018, ACM Trans. Math. Softw..

[65]  Joaquim R. R. A. Martins,et al.  An Object-oriented Framework for Rapid Discrete Adjoint Development using OpenFOAM , 2019, AIAA Scitech 2019 Forum.

[66]  Joaquim R. R. A. Martins,et al.  Robust aerodynamic shape optimization—From a circle to an airfoil , 2019, Aerospace Science and Technology.

[67]  Joaquim R. R. A. Martins,et al.  A Jacobian-free approximate Newton-Krylov startup strategy for RANS simulations , 2019, J. Comput. Phys..

[68]  Joaquim R. R. A. Martins,et al.  Aerothermal optimization of a ribbed U-bend cooling channel using the adjoint method , 2019, International Journal of Heat and Mass Transfer.

[69]  Joaquim R. R. A. Martins,et al.  Flutter and post-flutter constraints in aircraft design optimization , 2019, Progress in Aerospace Sciences.

[70]  Joaquim R. R. A. Martins,et al.  OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization , 2019, Structural and Multidisciplinary Optimization.

[71]  Joaquim R. R. A. Martins,et al.  Effective adjoint approaches for computational fluid dynamics , 2019, Progress in Aerospace Sciences.

[72]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[73]  Markus Towara,et al.  Discrete adjoint optimization with OpenFOAM , 2019 .

[74]  Graeme J. Kennedy,et al.  High-Resolution Topology Optimization with Stress and Natural Frequency Constraints , 2019, AIAA Journal.

[75]  Earl H. Dowell,et al.  Discrete Adjoint Approach for Nonlinear Unsteady Aeroelastic Design Optimization , 2019, AIAA Journal.

[76]  Joaquim R. R. A. Martins,et al.  Design optimization for self-propulsion of a bulk carrier hull using a discrete adjoint method , 2019, Computers & Fluids.

[77]  Joaquim R. R. A. Martins,et al.  Multimodality in Aerodynamic Wing Design Optimization , 2019 .

[78]  Dimitri J. Mavriplis,et al.  Adjoint-Based High-Fidelity Structural Optimization of Wind-Turbine Blade for Load Stress Minimization , 2019, AIAA Journal.