Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm)

The present paper focuses on machining (turning) aspects of CFRP (epoxy) composites by using single point HSS cutting tool. The optimal setting i.e. the most favourable combination of process parameters (such as spindle speed, feed rate, depth of cut and fibre orientation angle) has been derived in view of multiple and conflicting requirements of machining performance yields viz. material removal rate, surface roughness, SR $$(\hbox {R}_{\mathrm{a}})$$(Ra) (of the turned product) and cutting force. This study initially derives mathematical models (objective functions) by using statistics of nonlinear regression for correlating various process parameters with respect to the output responses. In the next phase, the study utilizes a recently developed advanced optimization algorithm teaching–learning based optimization (TLBO) in order to determine the optimal machining condition for achieving satisfactory machining performances. Application potential of TLBO algorithm has been compared to that of genetic algorithm (GA). It has been observed that exploration of TLBO appears more fruitful in contrast to GA in the context of this case experimental research focused on machining of CFRP composites.

[1]  U. Natarajan,et al.  Optimization of thrust force, torque, and tool wear in drilling of coir fiber-reinforced composites using Nelder–Mead and genetic algorithm methods , 2010 .

[2]  Vivek K. Patel,et al.  A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO) , 2016, Inf. Sci..

[3]  R. Venkata Rao,et al.  A comparative study of a teaching-learning-based optimization algorithm on multi-objective unconstrained and constrained functions , 2014, J. King Saud Univ. Comput. Inf. Sci..

[4]  M. Adam Khan,et al.  A hybrid algorithm to optimize cutting parameter for machining GFRP composite using alumina cutting tools , 2012 .

[5]  João Roberto Ferreira,et al.  Characteristics of carbon–carbon composite turning , 2001 .

[6]  Matej Crepinsek,et al.  A note on teaching-learning-based optimization algorithm , 2012, Inf. Sci..

[7]  S. Sharif,et al.  SIMULATED ANNEALING TO ESTIMATE THE OPTIMAL CUTTING CONDITIONS FOR MINIMIZING SURFACE ROUGHNESS IN END MILLING Ti-6Al-4V , 2010 .

[8]  Xin-She Yang Harmony Search as a Metaheuristic Algorithm , 2009 .

[9]  N. Baskar,et al.  Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation , 2011 .

[10]  Changqing Liu,et al.  Cutting Parameters Optimization by Using Particle Swarm Optimization (PSO) , 2007 .

[11]  Neelesh Kumar Jain,et al.  OPTIMIZATION OF ELECTRO-CHEMICAL MACHINING PROCESS PARAMETERS USING GENETIC ALGORITHMS , 2007 .

[12]  Ekkard Brinksmeier,et al.  Influence of Milling Process Parameters on the Surface Integrity of CFRP , 2012 .

[13]  Vimal Savsani,et al.  Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm , 2014 .

[14]  George Lubin,et al.  Handbook of Composites , 1982 .

[15]  A. Noorul Haq,et al.  Optimisation of machining parameters of glass-fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique , 2009 .

[16]  Dun Wen Zuo,et al.  Parameter Optimization of Milling Ti6Al4V Using GA Approach , 2010 .

[17]  S. Peters Handbook of Composites , 1998 .

[18]  Yoon Keun Kwak,et al.  Manufacturing of a Scara Type Direct-Drive Robot with Graphite Fiber Epoxy Composite Material , 1991, Robotica.

[19]  Anima Naik,et al.  Data Clustering Based on Teaching-Learning-Based Optimization , 2011, SEMCCO.

[20]  K. Palanikumar,et al.  Mathematical model to predict tool wear on the machining of glass fibre reinforced plastic composites , 2007 .

[21]  Eyup Bagci,et al.  Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN , 2006 .

[22]  R V Rao,et al.  Parameters optimization of advanced machining processes using TLBO algorithm , 2011 .

[23]  P. S. Satsangi,et al.  Cutting forces optimization in the turning of UD-GFRP composites under different cutting environment with polycrystalline diamond tool , 2012 .

[24]  A. Sait,et al.  Optimization of machining parameters of GFRP pipes using evolutionary techniques , 2010 .

[25]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[26]  Anima Naik,et al.  Weighted Teaching-Learning-Based Optimization for Global Function Optimization , 2013 .

[27]  Vivek Patel,et al.  Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems , 2013 .

[28]  Rajesh Kumar Verma Fuzzy rule based optimization in machining of glass fiber reinforced polymer (GFRP) composites , 2012 .

[29]  D. L. Gonzalez-Alvarez,et al.  Multiobjective Teaching-Learning-Based Optimization (MO-TLBO) for motif finding , 2012, 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI).

[30]  Umamaheswari krishnasamy,et al.  A Refined Teaching-Learning Based Optimization Algorithm for Dynamic Economic Dispatch of Integrated Multiple Fuel and Wind Power Plants , 2014 .

[31]  Mohammad Reza Razfar,et al.  The selection of milling parameters by the PSO-based neural network modeling method , 2011 .

[32]  Jože Balič,et al.  Hybrid ANFIS-ants system based optimisation of turning parameters , 2009 .

[33]  David Ben-Arieh,et al.  Simultaneous optimization of parts and operations sequences in SSMS: a chaos embedded Taguchi particle swarm optimization approach , 2010, J. Intell. Manuf..

[34]  Surjya K. Pal,et al.  Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II , 2007 .

[35]  K. Palanikumar,et al.  Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the taguchi method with fuzzy logics , 2006 .

[36]  M. Inoue,et al.  Soil degradation and prevention in greenhouse production , 2013, SpringerPlus.

[37]  R. Krishnamurthy,et al.  Machinability characteristics of fibre reinforced plastics composites , 1988 .

[38]  Anima Naik,et al.  A teaching learning based optimization based on orthogonal design for solving global optimization problems , 2013, SpringerPlus.

[39]  Qing Gao,et al.  Parameter optimization model in electrical discharge machining process , 2008 .

[40]  D. Aspinwall,et al.  Influence of lay-up configuration and feed rate on surface integrity when drilling carbon fibre reinforced plastic (CFRP) composites , 2014 .

[41]  K. Palanikumar,et al.  Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II) , 2009 .

[42]  Chih-Hung Tsai,et al.  Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach , 2010, Expert Syst. Appl..

[43]  Dervis Karaboga,et al.  Artificial bee colony algorithm for large-scale problems and engineering design optimization , 2012, J. Intell. Manuf..

[44]  Amar Patnaik,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method , 2007 .

[45]  R. Venkata Rao,et al.  Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm , 2013, Eng. Appl. Artif. Intell..

[46]  Ahmet Yardimeden,et al.  Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm , 2011 .

[47]  R. V. Rao,et al.  Solving Composite Test Functions Using Teaching-Learning-Based Optimization Algorithm , 2013 .

[48]  K. Kadirgama,et al.  Response Ant Colony Optimization of End Milling Surface Roughness , 2010, Sensors.

[49]  Aksel Koplev CUTTING OF CFRP WITH SINGLE EDGE TOOLS , 1980 .

[50]  Hyo-Chol Sin,et al.  Manufacturing of a Graphite Epoxy Composite Spindle for a Machine Tool , 1985 .

[51]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[52]  R. V. Rao,et al.  Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems , 2012 .

[53]  Jean-Pierre Kenné,et al.  A generalised model for optimising an end milling operation , 2007 .

[54]  P. Asokan,et al.  Selection of optimal conditions for CNC multitool drilling system using non-traditional techniques , 2008 .

[55]  Dai Gil Lee,et al.  MACHINABILITY OF CARBON-FIBER EPOXY COMPOSITE-MATERIALS IN TURNING , 1992 .

[56]  R. Venkata Rao,et al.  An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems , 2012, Sci. Iran..

[57]  C. Felix Prasad,et al.  Optimization of tool wear in turning using genetic algorithm , 2007 .

[58]  Ravipudi Venkata Rao,et al.  Complex constrained design optimisation using an elitist teaching-learning-based optimisation algorithm , 2014, Int. J. Metaheuristics.

[59]  Meenu Gupta,et al.  Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing , 2012 .

[60]  R. Saravanan,et al.  Optimization of multi-pass turning operations using ant colony system , 2003 .

[61]  Manoj Kumar Tiwari,et al.  An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system , 2012, J. Intell. Manuf..

[62]  Dong-Mok Lee,et al.  Optimization of electric discharge machining using simulated annealing , 2009 .

[63]  Orlando Durán,et al.  PSO for Selecting Cutting Tools Geometry , 2008, HAIS.

[64]  J. S. Senthilkumaar,et al.  Multi-criteria decision making in the selection of machining parameters for Inconel 718 , 2013 .

[65]  Reza Tavakkoli-Moghaddam,et al.  Vehicle routing scheduling using an enhanced hybrid optimization approach , 2010, Journal of Intelligent Manufacturing.

[66]  Dilip Kumar Pratihar,et al.  Modeling of Electrical Discharge Machining Process Using Conventional Regression Analysis and Genetic Algorithms , 2011 .

[67]  Edward G. Nawy,et al.  Fiber-Reinforced Composites , 2008 .

[68]  Vivek Patel,et al.  An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems , 2012 .

[69]  M. Schwartz Composite Materials Handbook , 1984 .

[70]  Ch. Ruegg,et al.  COMPOSITE PROPELLER SHAFTS DESIGN AND OPTIMIZATION , 1980 .

[71]  Meenu,et al.  PREDICTION OF SURFACE ROUGHNESS IN TURNING OF UD- GFRP USING MATHEMATICAL MODEL AND SIMULATED ANNEALING , 2013 .

[72]  K. Palanikumar,et al.  Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool , 2011, Prod. Eng..

[73]  V. N. Gaitonde,et al.  Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach , 2012, J. Intell. Manuf..

[74]  Gaohua Liao,et al.  Cutting Parameter Optimization Based on Particle Swarm Optimization , 2009, 2009 Second International Conference on Intelligent Computation Technology and Automation.

[75]  K. Palanikumar,et al.  Turning CFRP Composites with Ceramic tool for Surface Roughness Analysis , 2012 .

[76]  P. S. Satsangi Mechanica Confab MULTIPLE PERFORMANCE OPTIMIZATION IN MACHINING OF UD-GFRP COMPOSITES BY A PCD TOOL USING DISTANCE – BASED PARETO GENETIC ALGORITHM ( DPGA ) , 2013 .

[77]  S. Shanmugasundaram,et al.  Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations , 2007 .

[78]  Manish Bachlaus,et al.  Designing an integrated multi-echelon agile supply chain network: a hybrid taguchi-particle swarm optimization approach , 2008, J. Intell. Manuf..

[79]  K. Abhishek,et al.  Optimization of drilling process parameters by harmony search algorithm , 2014, International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014).

[80]  Mitsuo Gen,et al.  Network modeling and evolutionary optimization for scheduling in manufacturing , 2012, J. Intell. Manuf..

[81]  Farhad Kolahan,et al.  A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy , 2009 .

[82]  R. Venkata Rao,et al.  Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm , 2013 .

[83]  Bin Wang,et al.  Multi-objective optimization using teaching-learning-based optimization algorithm , 2013, Eng. Appl. Artif. Intell..

[84]  P. J. Pawar,et al.  Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm , 2008 .