Building effective models from sparse but precise data: Application to an alloy cluster expansion model

A common approach in computational science is to use a set of highly precise but expensive calculations to parameterize a model that allows less precise but more rapid calculations on larger-scale systems. Least-squares fitting on a model that underfits the data is generally used for this purpose. For arbitrarily precise data free from statistic noise, e.g., ab initio calculations, we argue that it is more appropriate to begin with an ensemble of models that overfit the data. Within a Bayesian framework, a most likely model can be defined that incorporates physical knowledge, provides error estimates for systems not included in the fit, and reproduces the original data exactly. We apply this approach to obtain a cluster expansion model for the CaZr_(1−x)Ti_xO_3 solid solution.

[1]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[2]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[3]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[4]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[5]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[6]  A. Jansen,et al.  Bayesian approach to the calculation of lateral interactions: NO/Rh(111) , 2008 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  V. Ozoliņš,et al.  A first-principles approach to modeling alloy phase equilibria , 2001 .

[9]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[10]  Watanabe,et al.  First-principles calculation of the pressure dependence of phase equilibria in the Al-Li system. , 1996, Physical review. B, Condensed matter.

[11]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[12]  Igor Levin,et al.  Local Structures and Raman Spectra in the Ca(Zr,Ti)O3 Perovskite Solid Solutions , 2006 .

[13]  S. Papson “Model” , 1981 .

[14]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[15]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[16]  Gerbrand Ceder,et al.  First-principles alloy theory in oxides , 2000 .

[17]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[19]  A. Tikhonov On the stability of inverse problems , 1943 .

[20]  Igor A. Abrikosov,et al.  Configurational thermodynamics of alloys from first principles: effective cluster interactions , 2008 .

[21]  Gus L. W. Hart,et al.  Obtaining Ising-like expansions for binary alloys from first principles , 2002 .

[22]  Ralf Drautz,et al.  Cluster expansions in multicomponent systems: precise expansions from noisy databases , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[24]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[25]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[26]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[27]  J. Connolly,et al.  Density-functional theory applied to phase transformations in transition-metal alloys , 1983 .

[28]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[29]  Tim Mueller,et al.  Bayesian approach to cluster expansions , 2009 .

[30]  Veera Sundararaghavan,et al.  Weighted multibody expansions for computing stable structures of multiatom systems , 2008 .