A Mixed Finite Element Method for EWOD That Directly Computes the Position of the Moving Interface

A new mixed finite element method is proposed and analyzed for simulating two-phase droplet motion in a microscale device driven by electrowetting-on-dielectric. The new feature of the method is that the finite element scheme is based on a weak formulation of the problem which includes the position of the moving interface and the curvature of its boundary as basic unknowns to be determined along with the velocity field and pressure. Well-posedness of the semidiscrete and fully discrete formulations and error estimates with minimal regularity assumptions are proved. Numerical examples are given to illustrate the robustness of the method.

[1]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[2]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[3]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[4]  Jan G. Korvink,et al.  Modeling, Simulation, and Optimization of Electrowetting , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[5]  Shawn W. Walker,et al.  Modeling, simulating, and controlling the fluid dynamics of electro-wetting on dielectric , 2007 .

[6]  Hsiang-Wei Lu,et al.  A diffuse-interface model for electrowetting drops in a Hele-Shaw cell , 2005, Journal of Fluid Mechanics.

[7]  Shawn W. Walker,et al.  A control method for steering individual particles inside liquid droplets actuated by electrowetting. , 2005, Lab on a chip.

[8]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[9]  C. Eck,et al.  ON A PHASE-FIELD MODEL FOR ELECTROWETTING , 2009 .

[10]  Jeong-Yeol Yoon,et al.  Electrowetting on Dielectrics ( EWOD ) : Reducing Voltage Requirements for Microfluidics , 2001 .

[11]  Hiroaki Suzuki,et al.  Microfluidic transport based on direct electrowetting , 2004 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  P. G. Ciarlet,et al.  Numerical methods for fluids , 2003 .

[14]  Marco Antonio Fontelos,et al.  On a Phase-Field Model for Electrowetting and Other Electrokinetic Phenomena , 2011, SIAM J. Math. Anal..

[15]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[16]  R. Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2000 .

[17]  Robert A. Hayes,et al.  A physical model describing the electro-optic behavior of switchable optical elements based on electrowetting , 2004 .

[18]  L. Minnema,et al.  An Investigation into the Mechanism of Water Treeing in Polyethylene High-Voltage Cables , 1980, IEEE Transactions on Electrical Insulation.

[19]  Bruno Berge,et al.  Électrocapillarité et mouillage de films isolants par l'eau , 1993 .

[20]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[21]  Harald Garcke,et al.  Thermodynamically Consistent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2010, 1011.0528.

[22]  Jean-Paul Zolesio,et al.  Moving Shape Analysis and Control: Applications to Fluid Structure Interactions , 2006 .

[23]  Shih-Kang Fan,et al.  Portable digital microfluidics platform with active but disposable Lab-On-Chip , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[24]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[25]  K. Mohseni,et al.  An Electrowetting Microvalve , 2006, Annals of the New York Academy of Sciences.

[26]  A. S. Bedekar,et al.  A Computational Model for the Design of ElectroWetting On Dielectric (EWOD) Systems , 2005 .

[27]  Chang-Jin Kim,et al.  On-chip sample preparation by electrowetting-on-dielectric digital microfluidics for matrix assisted laser desorption/ionization mass spectrometry , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[28]  Shawn Walker,et al.  Modeling the fluid dynamics of electrowetting on dielectric (EWOD) , 2004, Journal of Microelectromechanical Systems.

[29]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[30]  Robert A. Hayes,et al.  Liquid behavior inside a reflective display pixel based on electrowetting , 2004 .

[31]  Chang-Jin Kim,et al.  Particle separation and concentration control for digital microfluidic systems , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[32]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[33]  Aaron R Wheeler,et al.  Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. , 2004, Analytical chemistry.

[34]  Ricardo H. Nochetto,et al.  A hybrid variational front tracking-level set mesh generator for problems exhibiting large deformations and topological changes , 2010, J. Comput. Phys..

[35]  A. Calderón Intermediate spaces and interpolation, the complex method , 1964 .

[36]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[37]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[38]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[39]  Christof Eck,et al.  On a phase-field model for electrowetting , 2009 .

[40]  Ricardo H. Nochetto,et al.  Mixed finite element method for electrowetting on dielectric with contact line pinning , 2010 .

[41]  Shawn W. Walker,et al.  A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES , 2011, 1112.5758.

[42]  B. Shapiro,et al.  Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations , 2003 .

[43]  Shawn W. Walker,et al.  Electrowetting with contact line pinning: Computational modeling and comparisons with experiments , 2009 .

[44]  Paul Althaus Smith,et al.  Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .

[45]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[46]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[47]  P. G. Ciarlet,et al.  Numerical Methods for Fluids, Part 3 , 2003 .

[48]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[49]  Roger Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2005 .

[50]  Shawn W. Walker,et al.  Tetrahedralization of Isosurfaces with Guaranteed-Quality by Edge Rearrangement (TIGER) , 2012, SIAM J. Sci. Comput..