Multiparametric full waveform inversion of 2D ground penetrating radar data using multiple GPUs

Ground Penetrating Radar is a geophysical method based on the propagation of electromagnetic waves for the prospecting of subsurface layers. The characterization of the subsurface from data obtained at the surface is an inverse process. Full Waveform Inversion (FWI) is an iterative method that requires: a cost function to measure the misfit between observed and modeled data; a wave propagator to compute the modeled data; and an initial parameters model that is updated, at each iteration step, until reaches an acceptable decrement of the cost function. FWI has a high computational cost because use the electromagnetic wave equation is discretized using Finite Difference in Time Domain. Although shielded antenna can be configured in multi-channel mode to allow large wavenumbers, this increases the budgets of the acquisitions, the processing time and the human resource in the data collection in the field. Therefore, in this paper a methodology to obtain a simultaneous inversion of permittivity, permeability, and conductivity from 2D GPR data using FWI in time domain to short-offset is proposed. The proposed methodology takes advantage of Graphical Processing Units (GPUs), through the programming language CUDA-C developed by NVIDIA, to reduce the execution time. The FWI reaches the best result (measured as the lowest cycle skipping values % CS) when there is no conductivity in the numerical experiments. This paper shows that the conductivity effect has a bigger negative impact during the inversion process than the Full Waveform inversion of noisy data.