The Orbital Stability of Elliptic Solutions of the Focusing Nonlinear Schrödinger Equation

We examine the stability of the elliptic solutions of the focusing nonlinear Schr\"odinger equation (NLS) with respect to subharmonic perturbations. Using the integrability of NLS, we discuss the spectral stability of the elliptic solutions, establishing that solutions of smaller amplitude are stable with respect to larger classes of perturbations. We show that spectrally stable solutions are orbitally stable by constructing a Lyapunov functional using higher-order conserved quantities of NLS.

[1]  Björn Sandstede,et al.  On the Stability of Periodic Travelling Waves with Large Spatial Period , 2001 .

[2]  Bernard Deconinck,et al.  Computing spectra of linear operators using the Floquet-Fourier-Hill method , 2006, J. Comput. Phys..

[3]  Richard Kollár,et al.  Graphical Krein Signature Theory and Evans-Krein Functions , 2012, SIAM Rev..

[4]  K. Zumbrun,et al.  Convergence as period goes to infinity of spectra of periodic traveling waves toward essential spectra of a homoclinic limit , 2018, Journal de Mathématiques Pures et Appliquées.

[5]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[6]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[7]  M. Haragus,et al.  Stability of small periodic waves for the nonlinear Schrödinger equation , 2006, math/0609026.

[8]  J. Maddocks,et al.  On the stability of KdV multi‐solitons , 1993 .

[9]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[10]  T. Kapitula,et al.  The orbital stability of the cnoidal waves of the Korteweg-de Vries equation , 2010 .

[11]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[12]  Bernard Deconinck,et al.  KdV cnoidal waves are spectrally stable , 2009 .

[13]  Robert Conte,et al.  The Painlevé Handbook , 2020, Mathematical Physics Studies.

[14]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[15]  Bernard Deconinck,et al.  Elliptic solutions of the defocusing NLS equation are stable , 2011 .

[16]  B. Deconinck,et al.  The stability spectrum for elliptic solutions to the focusing NLS equation , 2016, 1610.08539.

[17]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[18]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[19]  Mark J. Ablowitz,et al.  Computational chaos in the nonlinear Schrödinger equation without homoclinic crossings , 1996 .

[20]  G. Rowlands On the Stability of Solutions of the Non-linear Schrödinger Equation , 1974 .

[21]  P. Gibbon,et al.  Introduction to Plasma Physics , 2017, 2007.04783.

[22]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[23]  M. Ablowitz,et al.  The Periodic Cubic Schrõdinger Equation , 1981 .

[24]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[25]  Kaup Dj,et al.  Perturbation theory for solitons in optical fibers. , 1990 .

[26]  T. Gallay,et al.  Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves , 2014, 1409.6453.

[27]  B. Deconinck,et al.  The stability spectrum for elliptic solutions to the sine-Gordon equation , 2017, 1705.04586.

[28]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[29]  Todd Kapitula,et al.  On the spectra of periodic waves for infinite-dimensional Hamiltonian systems , 2008 .

[30]  S. Lafortune,et al.  Squared eigenfunctions and linear stability properties of closed vortex filaments , 2011 .

[31]  Thierry Gallay,et al.  Orbital stability of periodic waves for the nonlinear Schrödinger equation , 2007 .

[32]  Jong-Eao Lee The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation / , 1986 .

[33]  Kaup Perturbation theory for solitons in optical fibers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[34]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[35]  T. Kapitula On the stability of N-solitons in integrable systems , 2007 .

[36]  Stefan Le Coz,et al.  Stability of periodic waves of 1D cubic nonlinear Schr{\"o}dinger equations , 2016, 1606.04215.

[37]  R. Gardner,et al.  Spectral analysis of long wavelength periodic waves and applications. , 1997 .

[38]  D. McLaughlin,et al.  Toward a Topological Classification of Integrable PDE’s , 1991 .

[39]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[40]  S. Lafortune,et al.  Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations , 2008 .

[41]  B. Deconinck,et al.  Real Lax spectrum implies spectral stability , 2019, Studies in Applied Mathematics.

[42]  Bernard Deconinck,et al.  The Stability Analysis of the Periodic Traveling Wave Solutions of the mKdV Equation , 2011 .

[43]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[44]  Bernard Deconinck,et al.  Periodic finite-genus solutions of the KdV equation are orbitally stable , 2010 .