Crack propagation and size effect in concrete using a non-local damage model

Size effect is a major issue in concrete structures. Experimental and numerical investigations on the influence of size effect on crack opening, crack length and crack propagation are presented in this paper. An isotropic non-local strain softening damage constitutive law is adopted for the numerical model. The material characteristic length is calibrated using an optimization algorithm and a post-processing method is chosen to obtain information on cracking. Numerical global and local results are compared with the experimental data and conclusions are drawn on the advantages and limitations of the adopted modelling strategy to reproduce size effect in concrete structures.

[1]  S. Choi,et al.  Measurement of deformations on concrete subjected to compression using image correlation , 1997 .

[2]  Xiaozhi Hu,et al.  Scaling of quasi-brittle fracture: Boundary and size effect , 2006 .

[3]  Jan Carmeliet,et al.  Optimal estimation of gradient damage parameters from localization phenomena in quasi‐brittle materials , 1999 .

[4]  Z. Bažant,et al.  Determination of Fracture Energy from Size Effect and Brittleness Number , 1987 .

[5]  Surendra P. Shah,et al.  Size-effect method for determining fracture energy and process zone size of concrete , 1990 .

[6]  Ellen Kuhl,et al.  Parameter identification of gradient enhanced damage models with the finite element method , 1999 .

[7]  Jean-François Dubé,et al.  Calibration of nonlocal damage model from size effect tests , 2003 .

[8]  M. Jirásek Objective modeling of strain localization , 2002 .

[9]  F. Grondin,et al.  Monitoring size effect on crack opening in concrete by digital image correlation , 2012 .

[10]  René Chambon,et al.  Plastic continuum with microstructure, Local Second Gradient Theories for Geomaterials : Localization Studies , 2001 .

[11]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[12]  Gioacchino Viggiani,et al.  Fracture mechanisms in soft rock: Identification and quantification of evolving displacement discontinuities by extended digital image correlation , 2011 .

[13]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[14]  Jean-François Dubé,et al.  Non‐local damage model with evolving internal length , 2004 .

[15]  R. D. Mindlin MICROSTRUCTURE IN LINEAR ELASTICITY , 1999 .

[16]  L. Sluys,et al.  Calibration of a higher-order continuum model using global and local data , 2008 .

[17]  J. Tejchman,et al.  Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams , 2011 .

[18]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[19]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[20]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[21]  R. Chambon,et al.  Shear softening and localization: Modelling the evolution of the width of the shear zone , 2008 .

[22]  Jerzy Pamin,et al.  Gradient plasticity in numerical simulation of concrete cracking , 1996 .

[23]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[24]  N. Challamel,et al.  On the propagation of localization in the plasticity collapse of hardening–softening beams , 2010 .

[25]  Erik H. Saenger,et al.  Elastic wave propagation in a segmented X-ray computed tomography model of a concrete specimen , 2010 .

[26]  George Z. Voyiadjis,et al.  Gradient plasticity theory with a variable length scale parameter , 2005 .

[27]  Lori Graham-Brady,et al.  Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete , 2007 .

[28]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[29]  Xiaozhi Hu,et al.  Boundary effect on concrete fracture and non-constant fracture energy distribution , 2003 .

[30]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[31]  K. Otsuka,et al.  Fracture process zone in concrete tension specimen , 2000 .

[32]  F. Wittmann,et al.  Explanation of size effect in concrete fracture using non-uniform energy distribution , 2002 .

[33]  Stéphane Roux,et al.  Extended three-dimensional digital image correlation (X3D-DIC) , 2008 .

[34]  L. J. Sluys,et al.  Estimation of model parameters in nonlocal damage theories by inverse analysis techniques , 2006 .

[35]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[36]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[37]  J. M. Reynouard,et al.  Mixed mode fracture in plain and reinforced concrete: some results on benchmark tests , 2000 .