On the likelihood of detecting gravitational waves from Population III compact object binaries

We study the contribution of binary black hole (BH-BH) mergers from the first, metal-free stars in the Universe (Pop III) to gravitational wave detection rates. Our study combines initial conditions for the formation of Pop III stars based on N-body simulations of binary formation (including rates, binary fraction, initial mass function, orbital separation and eccentricity distributions) with an updated model of stellar evolution specific for Pop III stars. We find that the merger rate of these Pop III BH-BH systems is relatively small ( 1 per cent) contribution of these stars to low-redshift BH-BH mergers. However, it remains to be tested whether (and at what level) rapidly spinning Pop III stars (homogeneous evolution) can contribute to BH-BH mergers in the local Universe.

[1]  S. Chatterjee,et al.  GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION , 2012, 1203.0325.

[2]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[3]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[4]  V. Bromm,et al.  Constraining the Statistics of Population III Binaries , 2012, 1211.1889.

[5]  Shaun Cole,et al.  Generating dark matter halo merger trees , 2007, 0708.1382.

[6]  F. Timmes,et al.  ON VARIATIONS OF PRE-SUPERNOVA MODEL PROPERTIES , 2016, 1611.01207.

[7]  P. Roberts,et al.  On the Theory of Stellar Winds , 1971 .

[8]  N. Tominaga,et al.  THE MASS SPECTRUM OF THE FIRST STARS , 2014, 1407.1374.

[9]  VIRGO sensitivity to binary coalescences and the Population III black hole binaries , 2006, astro-ph/0602533.

[10]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[11]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[12]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[13]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[14]  D. Dale,et al.  TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY , 2014, 1406.6655.

[15]  Accepted for publication in the Astrophysical Journal A New Look at the Binary Characteristics of Massive Stars , 2007 .

[16]  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, astro-ph/0007176.

[17]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[18]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[19]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[20]  Chris L. Fryer,et al.  THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.

[21]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[22]  K. Omukai,et al.  Formation of Primordial Protostars , 1998, astro-ph/9811308.

[23]  R. Perna,et al.  Formation, disruption and energy output of Population III X-ray binaries , 2015, 1509.05427.

[24]  H. Zinnecker,et al.  A spectroscopic survey on the multiplicity of high-mass stars , 2012, 1205.5238.

[25]  Lisa Barsotti,et al.  Prospects for doubling the range of Advanced LIGO , 2014, 1410.5882.

[26]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[27]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[28]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[29]  Volker Bromm,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2002 .

[30]  Tom Abel,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .

[31]  Jaime S. Cardoso,et al.  Matched-filtering and parameter estimation of ringdown waveforms , 2007, 0707.1202.

[32]  J. Silk,et al.  Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background , 2016, 1604.04288.

[33]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[34]  Boyuan Liu,et al.  Gravitational waves from the remnants of the first stars in nuclear star clusters , 2016, Monthly Notices of the Royal Astronomical Society.

[35]  N. Mavalvala,et al.  Gravitational wave detector with cosmological reach , 2014, 1410.0612.

[36]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[37]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[38]  R. Souza,et al.  Population III.1 and III.2 gamma-Ray Bursts: Constraints on the event rate for future radio and X-ray surveys , 2011, 1105.2395.

[39]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[40]  E. Quataert,et al.  LOCAL RADIATION HYDRODYNAMIC SIMULATIONS OF MASSIVE STAR ENVELOPES AT THE IRON OPACITY PEAK , 2015, 1509.05417.

[41]  G. Nelemans,et al.  Constraining the formation of black holes in short-period black hole low-mass X-ray binaries , 2015, 1507.08105.

[42]  The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources , 2004, astro-ph/0403361.

[43]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[44]  Z. Haiman,et al.  Gravitational wave background from Population III binary black holes consistent with cosmic reionization , 2016, 1603.06921.

[45]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[46]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[47]  E. Berti,et al.  Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers. , 2016, Physical review letters.

[48]  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[49]  K. Hotokezaka,et al.  Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave , 2014, 1402.6672.

[50]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[51]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[52]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[53]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[54]  S. Woosley THE PROGENITOR OF GW150914 , 2016, 1603.00511.

[55]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[56]  G. Meynet,et al.  Evolution and fate of very massive stars , 2013, 1305.2099.

[57]  Piet Hut,et al.  BOOK REVIEW: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics , 2003 .

[58]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[59]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.

[60]  R. Perna,et al.  Numerical study of N = 4 binary–binary scatterings in a background potential , 2017 .

[61]  V. Lipunov,et al.  The first gravitational-wave burst GW150914, as predicted by the scenario machine , 2016, 1605.01604.

[62]  T. Greif,et al.  The first stars: formation of binaries and small multiple systems , 2009, 0908.0712.

[63]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[64]  Olivier Schnurr,et al.  The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit , 2010, 1007.3284.

[65]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[66]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[67]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[68]  V. Kalogera,et al.  ANALYTICAL EXPRESSIONS FOR THE ENVELOPE BINDING ENERGY OF GIANTS AS A FUNCTION OF BASIC STELLAR PARAMETERS , 2010, 1009.5400.

[69]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[70]  Formation and evolution of primordial protostellar systems , 2012 .

[71]  L. Girardi,et al.  Zero-metallicity stars I. Evolution at constant mass , 2001, astro-ph/0102253.

[72]  I. Mandel Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries , 2015, 1510.03871.

[73]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[74]  S. Woosley,et al.  On the Stability of Very Massive Primordial Stars , 2000, astro-ph/0009410.

[75]  I. Kowalska,et al.  Gravitational wave background from Population III binaries , 2012, 1202.3346.

[76]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[77]  D. Vanbeveren,et al.  Massive double compact object mergers: gravitational wave sources and r-process element production sites , 2013, 1307.0959.

[78]  Chris L. Fryer,et al.  MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM , 2011, 1110.1635.

[79]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[80]  S. D. Mink,et al.  MERGER RATES OF DOUBLE NEUTRON STARS AND STELLAR ORIGIN BLACK HOLES: THE IMPACT OF INITIAL CONDITIONS ON BINARY EVOLUTION PREDICTIONS , 2015, 1506.03573.

[81]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[82]  Xiangdong Li,et al.  ERRATUM: “ON THE BINDING ENERGY PARAMETER λ OF COMMON ENVELOPE EVOLUTION” (2010, ApJ, 716, 114) , 2010 .

[83]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[84]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[85]  J. Bond,et al.  Gravitational waves from a population of binary black holes , 1984 .

[86]  S. Detweiler BLACK HOLES AND GRAVITATIONAL WAVES. III. THE RESONANT FREQUENCIES OF ROTATING HOLES , 1980 .

[87]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[88]  N. Kanda,et al.  The detection rate of inspiral and quasi-normal modes of Population III binary black holes which can confirm or refute the general relativity in the strong gravity region , 2015, 1505.06962.

[89]  A. Claret New grids of stellar models including tidal-evolution constants up to carbon burning - IV. From 0.8 to 125$M_{\odot}$: high metallicities (Z = 0.04–0.10) , 2007 .