PbS quantum dot thin film solar cells using a CdS window layer

We describe results of our investigations of the structural, optical, and electronic properties of PbS-QD films fabricated using layer-by-layer dip coating based on 1,2-ethanedithiol as an insolubilizing agent. Our investigations extend to a study of the photovoltaic properties of heterojunction thin film solar cells fabricated by sputter-deposition of a CdS ntype thin film followed by deposition of a PbS-QD thin film. Our CdS/PbS-QD solar cells exhibit open circuit voltage in excess of previously reported PbS-QD solar cells. Under standard simulated AM1.5G illumination, we observe short circuit current density as high as 12 mA cm-2, open circuit voltage as high as 0.65 V, and a maximum efficiency of 3.3%.

[1]  Rommel Noufi,et al.  Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .

[2]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[3]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[4]  A. Romeo,et al.  A highly efficient and stable CdTe/CdS thin film solar cell , 1999 .

[5]  Jianbo Gao,et al.  n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. , 2011, Nano letters.

[6]  Edward H. Sargent,et al.  Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts , 2010 .

[7]  Dong-Jin Lee,et al.  Effects of CdCl2 treatment on the properties of CdS films prepared by r.f. magnetron sputtering , 2007 .

[8]  Edward H. Sargent,et al.  Colloidal quantum dot photovoltaics: the effect of polydispersity. , 2012, Nano letters.

[9]  Oleksandr Voznyy,et al.  All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation , 2012, Advanced materials.

[10]  Andrew Y. Wang,et al.  Bright and color-saturated emission from blue light emitting diodes based on solution-processed colloidal nanocrystal quantum dots , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[11]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[12]  Eui-Tae Kim,et al.  Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications , 2008 .

[13]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[14]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[15]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[16]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[17]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[18]  F. Yoshino,et al.  Nonlinear refractive properties in lead sulfide (PbS) nanocrystals from 1200 to 1550 nm , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[19]  H. Uda,et al.  Thin CdS films prepared by metalorganic chemical vapor deposition , 2003 .

[20]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[21]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[22]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[23]  A. Majumdar,et al.  Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. , 2008, Nano letters.

[24]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[25]  David Cahen,et al.  Stability of CdTe/CdS thin-film solar cells , 2000 .

[26]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[27]  Mohammad Khaja Nazeeruddin,et al.  Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells , 2007 .

[28]  Khagendra P. Bhandari,et al.  Thin Film Solar Cells Based on the Heterojunction of Colloidal PbS Quantum Dots with CdS , 2013 .

[29]  V. Bulović,et al.  Interfacial Recombination for Fast Operation of a Planar Organic/QD Infrared Photodetector , 2010, Advanced materials.

[30]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[31]  Hans-Werner Schock,et al.  Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices , 2011 .