Weighted and Controlled Frames: Mutual Relationship and First Numerical Properties

Weighted and controlled frames have been introduced recently to improve the numerical efficiency of iterative algorithms for inverting the frame operator. In this paper, we develop systematically these notions, including their mutual relationship. We will show that controlled frames are equivalent to standard frames and so this concept gives a generalized way to check the frame condition, while offering a numerical advantage in the sense of preconditioning. Next, we investigate weighted frames, in particular their relation to controlled frames. We consider the special case of semi-normalized weights, where the concepts of weighted frames and standard frames are interchangeable. We also make the connection with frame multipliers. Finally, we analyze weighted frames numerically. First, we investigate three possibilities for finding weights in order to tighten a given frame, i.e. decrease the frame bound ratio. Then, we examine Gabor frames and how well the canonical dual of a weighted frame is approximated by the inversely weighted dual frame.

[1]  Martin Ehler,et al.  Compactly Supported Multivariate, Pairs of Dual Wavelet Frames Obtained by Convolution , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[5]  Shayne Waldron,et al.  Generalized Welch bound equality sequences are tight fram , 2003, IEEE Trans. Inf. Theory.

[6]  P. Jorgensen,et al.  Entropy encoding, Hilbert space, and Karhunen-Loève transforms , 2007, math-ph/0701056.

[7]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[8]  Behrooz Khosravi,et al.  Fusion Frames and G-Frames in Hilbert C*-Modules , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[9]  Shayne Waldron,et al.  Signed frames and Hadamard products of Gram matrices , 2002 .

[10]  R. Calderbank,et al.  Robust dimension reduction, fusion frames, and Grassmannian packings , 2007, 0709.2340.

[11]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[12]  Laurent Jacques,et al.  Stereographic wavelet frames on the sphere , 2005 .

[13]  Laurent Jacques Ondelettes, repères et couronne solaire , 2004 .

[14]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[15]  Wenchang Sun,et al.  Sufficient Conditions for Irregular Wavelet Frames , 2008 .

[16]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[17]  Massimo Fornasier,et al.  Intrinsic Localization of Frames , 2005 .

[18]  Darian M. Onchis,et al.  The Flexible Gabor-Wavelet Transform for Car Crash Signal Analysis , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[19]  Jean-Pierre Antoine,et al.  Multiselective Pyramidal Decomposition of Images: Wavelets with Adaptive Angular Selectivity , 2007, Int. J. Wavelets Multiresolution Inf. Process..

[20]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[22]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[23]  Pierre Vandergheynst,et al.  Wavelets on the Two-Sphere and Other Conic Sections , 2007 .

[24]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[25]  Peter Balazs,et al.  Matrix Representation of Operators Using Frames , 2005, math/0510146.

[26]  M. Hampejs,et al.  Double Preconditioning for Gabor Frames , 2006, IEEE Transactions on Signal Processing.

[27]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[28]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[29]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[30]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[31]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[32]  Mohamed El Aallaoui,et al.  Adaptive Selectivity Representation: Design and Applications , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[33]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[34]  J. Antoine,et al.  Partial *- Algebras and Their Operator Realizations , 2002 .

[35]  P. Balázs Basic definition and properties of Bessel multipliers , 2005, math/0510091.

[36]  Péter Balázs,et al.  Hilbert-Schmidt Operators and Frames - Classification, Best Approximation by Multipliers and Algorithms , 2006, Int. J. Wavelets Multiresolution Inf. Process..

[37]  J. Gabardo Weighted irregular Gabor tight frames and dual systems using windows in the Schwartz class , 2009 .

[38]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[39]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .