On the Semirelativistic Hartree-Type Equation
暂无分享,去创建一个
[1] Enno Lenzmann,et al. Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.
[2] R. Glassey. Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations , 1977 .
[3] T. Ozawa,et al. Remarks on modified improved Boussinesq equations in one space dimension , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] K. Nakanishi. Modified Wave Operators for the Hartree Equation with Data, Image and Convergence in the Same Space, II , 2002 .
[5] Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.
[6] Paul H. Rabinowitz,et al. On a class of nonlinear Schrödinger equations , 1992 .
[7] Jacqueline E. Barab,et al. Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .
[8] Alexander Elgart,et al. Mean Field Dynamics of Boson Stars , 2005 .
[9] Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity , 2006 .
[10] J. Ginibre,et al. Long range scattering for non-linear Schrödinger and Hartree equations in space dimensionn≥2 , 1993 .
[11] N. Hayashi,et al. Smoothing effect for some Schrödinger equations , 1989 .
[12] M. Weinstein,et al. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .
[13] I. Segal. Space-time decay for solutions of wave equations , 1976 .
[14] K. Tsutaya. Existence and Blow up for a Wave Equation with a Cubic Convolution , 2005 .
[15] Kenji Nakanishi,et al. Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .
[16] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[17] K. Nakanishi,et al. Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation , 2003 .
[18] R. Glassey. On the asymptotic behavior of nonlinear wave equations : blow-up theorems and applications to scattering theory , 1973 .
[19] Convergence dans $L^p (R^{n+1})$ de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes , 1987 .
[20] W. Strauss,et al. On a wave equation with a cubic convolution , 1982 .
[21] E. Lieb,et al. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .
[22] N. Hayashi,et al. Scattering theory for Hartree type equations , 1987 .
[23] T. Ozawa. Remarks on proofs of conservation laws for nonlinear Schrödinger equations , 2006 .
[24] Walter A. Strauss,et al. Nonlinear scattering theory at low energy: Sequel☆ , 1981 .
[25] T. Ozawa,et al. Nonlinear scattering with nonlocal interaction , 1992 .
[26] N. Hayashi,et al. Scattering theory in the weighted $L^2 (\mathbb {R}^n)$ spaces for some Schrödinger equations , 1988 .
[27] Tosio Kato. On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .
[28] K. Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space , 2002 .
[29] A. Matsumura,et al. On the Asymptotic Behavior of Solutions of Semi-linear Wave Equations , 1976 .
[30] Walter A. Strauss,et al. Nonlinear scattering theory at low energy , 1981 .