On the Semirelativistic Hartree-Type Equation

We study the global Cauchy problem and scattering problem for the semi-relativistic equation in $\mathbb{R}^n, n \ge 1$ with nonlocal nonlinearity $F(u) = \lambda (|x|^{-\gamma} * |u|^2)u, 0 2, n \ge 3$ and the non-existence of asymptotically free solutions for $0 < \gamma \le 1, n\ge 3$. We also specify asymptotic behavior of solutions as the mass tends to zero and infinity.

[1]  Enno Lenzmann,et al.  Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.

[2]  R. Glassey Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations , 1977 .

[3]  T. Ozawa,et al.  Remarks on modified improved Boussinesq equations in one space dimension , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  K. Nakanishi Modified Wave Operators for the Hartree Equation with Data, Image and Convergence in the Same Space, II , 2002 .

[5]  Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.

[6]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[7]  Jacqueline E. Barab,et al.  Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .

[8]  Alexander Elgart,et al.  Mean Field Dynamics of Boson Stars , 2005 .

[9]  Hironobu Sasaki Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity , 2006 .

[10]  J. Ginibre,et al.  Long range scattering for non-linear Schrödinger and Hartree equations in space dimensionn≥2 , 1993 .

[11]  N. Hayashi,et al.  Smoothing effect for some Schrödinger equations , 1989 .

[12]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[13]  I. Segal Space-time decay for solutions of wave equations , 1976 .

[14]  K. Tsutaya Existence and Blow up for a Wave Equation with a Cubic Convolution , 2005 .

[15]  Kenji Nakanishi,et al.  Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .

[16]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[17]  K. Nakanishi,et al.  Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation , 2003 .

[18]  R. Glassey On the asymptotic behavior of nonlinear wave equations : blow-up theorems and applications to scattering theory , 1973 .

[19]  Convergence dans $L^p (R^{n+1})$ de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes , 1987 .

[20]  W. Strauss,et al.  On a wave equation with a cubic convolution , 1982 .

[21]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[22]  N. Hayashi,et al.  Scattering theory for Hartree type equations , 1987 .

[23]  T. Ozawa Remarks on proofs of conservation laws for nonlinear Schrödinger equations , 2006 .

[24]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy: Sequel☆ , 1981 .

[25]  T. Ozawa,et al.  Nonlinear scattering with nonlocal interaction , 1992 .

[26]  N. Hayashi,et al.  Scattering theory in the weighted $L^2 (\mathbb {R}^n)$ spaces for some Schrödinger equations , 1988 .

[27]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[28]  K. Nakanishi Modified wave operators for the Hartree equation with data, image and convergence in the same space , 2002 .

[29]  A. Matsumura,et al.  On the Asymptotic Behavior of Solutions of Semi-linear Wave Equations , 1976 .

[30]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .