Adaptive Ensemble Learning with Concept Drift Detection for Intrusion Detection

[1]  Siti Mariyam Shamsuddin,et al.  Ensemble classifiers for network intrusion detection system , 2009 .

[2]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[3]  Albert Bifet,et al.  Adaptive XGBoost for Evolving Data Streams , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[4]  Iqbal Gondal,et al.  Survey of intrusion detection systems: techniques, datasets and challenges , 2019, Cybersecurity.

[5]  Gang Yin,et al.  Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure , 2014, Neurocomputing.

[6]  Hui Liu,et al.  Intrusion Detection System Based on Evolving Rules for Wireless Sensor Networks , 2018, J. Sensors.

[7]  Talel Abdessalem,et al.  Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..

[8]  Christin Schäfer,et al.  Learning Intrusion Detection: Supervised or Unsupervised? , 2005, ICIAP.

[9]  Ali A. Ghorbani,et al.  A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[10]  Shikha Mehta,et al.  Concept drift in Streaming Data Classification: Algorithms, Platforms and Issues , 2017, ITQM.

[11]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[12]  Usha Devi Gandhi,et al.  A stacked ensemble learning model for intrusion detection in wireless network , 2020, Neural Computing and Applications.

[13]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[14]  Hossein Pedram,et al.  A Danger-Based Approach to Intrusion Detection , 2014, ArXiv.

[15]  Haibo He,et al.  Incremental Learning From Stream Data , 2011, IEEE Transactions on Neural Networks.

[16]  Manal Abdullah,et al.  Streaming Data Classification With Concept Drift , 2019 .

[17]  Mamun Bin Ibne Reaz,et al.  A survey of intrusion detection systems based on ensemble and hybrid classifiers , 2017, Comput. Secur..

[18]  Ruoyu Li,et al.  Data Mining Based Full Ceramic Bearing Fault Diagnostic System Using AE Sensors , 2011, IEEE Transactions on Neural Networks.

[19]  Mohsen Kahani,et al.  Incremental Hybrid Intrusion Detection Using Ensemble of Weak Classifiers , 2008 .