Discrete Dynamical System Framework for Construction of Connections between Critical Regions in Lattice Height Data

Abstract We define a new mathematical model for the topological study of lattice height data. A discrete multivalued dynamical system framework is used to establish discrete analogies of a Morse function, its gradient field, and its stable and unstable manifolds in order to interpret functions numerically given on finite sets of pixels. We present efficient algorithms detecting critical components of a height function f and displaying connections between them by means of a graph, called the Morse connections graph whose nodes represent the critical components of f and edges show the existence of connecting trajectories between nodes. This graph encodes efficiently the topological structure of the data and makes it easy to manipulate for subsequent processing.

[1]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[2]  Konstantin Mischaikow,et al.  The Conley index theory: A brief introduction , 1999 .

[3]  J. Maxwell L. On hills and dales: To the editors of the Philosophical Magazine and Journal , 1870 .

[4]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[5]  Homotopy Conley index for discrete multivalued dynamical systems , 2006 .

[6]  C. McCord On the Hopf index and the Conley index , 1989 .

[7]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[8]  R. Lee,et al.  Two-Dimensional Critical Point Configuration Graphs , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[10]  Alan C. F. Colchester,et al.  Superficial and deep structure in linear diffusion scale space: isophotes, critical points and separatrices , 1995, Image Vis. Comput..

[11]  Djemel Ziou,et al.  Morse Connections Graph for Shape Representation , 2005, ACIVS.

[12]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[14]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[15]  Bernd Hamann,et al.  Detecting Critical Regions in Scalar Fields , 2003, VisSym.

[16]  Djemel Ziou,et al.  Morse homology descriptor for shape characterization , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[17]  J. Koenderink,et al.  The structure of two-dimensional scalar fields with applications to vision , 1979, Biological Cybernetics.

[18]  M. Morse Relations between the critical points of a real function of $n$ independent variables , 1925 .

[19]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[20]  J. Craggs Applied Mathematical Sciences , 1973 .

[21]  R. Forman Morse Theory for Cell Complexes , 1998 .

[22]  坂上 貴之 書評 Computational Homology , 2005 .

[23]  松本 幸夫 An introduction to Morse theory , 2002 .

[24]  M. Mrozek,et al.  Conley index for discrete multi-valued dynamical systems , 1995 .

[25]  Tosiyasu L. Kunii,et al.  Constructing a Reeb graph automatically from cross sections , 1991, IEEE Computer Graphics and Applications.

[26]  Jesse Freeman,et al.  in Morse theory, , 1999 .