Monte Carlo sampling of solutions to inverse problems

Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines a priori information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the a posteriori probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). When analyzing an inverse problem, obtaining a maximum likelihood model is usually not sucient, as we normally also wish to have infor

[1]  R. Parker Understanding Inverse Theory , 1977 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  A. Tarantola,et al.  Monte Carlo estimation and resolution analysis of seismic background velocities , 1991 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  R. Wiggins,et al.  Monte Carlo inversion of body‐wave observations , 1969 .

[6]  Klaus Mosegaard,et al.  A SIMULATED ANNEALING APPROACH TO SEISMIC MODEL OPTIMIZATION WITH SPARSE PRIOR INFORMATION , 1991 .

[7]  Frank Press,et al.  Earth models obtained by Monte Carlo inversion. , 1968 .

[8]  V. I. Keilis-Borok,et al.  Inverse Problems of Seismology (Structural Review) , 1967 .

[9]  Daniel H. Rothman,et al.  Automatic estimation of large residual statics corrections , 1986 .

[10]  G. Backus,et al.  Inference from inadequate and inaccurate data, I. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Wiggins,et al.  The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .

[12]  J Boiden Pedersen,et al.  Variability of estimated binding parameters. , 1990, Biophysical chemistry.

[13]  Leon Thomsen,et al.  Biot-consistent elastic moduli of porous rocks; low-frequency limit , 1985 .

[14]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[15]  G Backus Inference from Inadequate and Inaccurate Data, II. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[16]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[17]  LeRoy M. Dorman,et al.  The gravitational edge effect , 1975 .

[18]  A.,et al.  Inverse Problems = Quest for Information , 2022 .

[19]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[20]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[21]  C. Chapman,et al.  Automatic 1-D waveform inversion of marine seismic refraction data , 1988 .

[22]  Robert L. Parker,et al.  UNDERSTANDING INVERSE THEORY x10066 , 1977 .

[23]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[24]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[25]  Wafik B. Beydoun,et al.  Reference velocity model estimation from prestack waveforms: Coherency optimization by simulated annealing , 1989 .

[26]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[27]  D. Jackson The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .