Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System Land Surface States

Abstract Precipitation is arguably the most important meteorological forcing variable in land surface modeling. Many types of precipitation datasets exist (with various pros and cons) and include those from atmospheric data assimilation systems, satellites, rain gauges, ground radar, and merged products. These datasets are being evaluated in order to choose the most suitable precipitation forcing for real-time and retrospective simulations of the Global Land Data Assimilation System (GLDAS). This paper first presents results of a comparison for the period from March 2002 to February 2003. Later, GLDAS simulations 14 months in duration are analyzed to diagnose impacts on GLDAS land surface states when using the Mosaic land surface model (LSM). A comparison of seasonal total precipitation for the continental United States (CONUS) illustrates that the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) has the closest agreement with a CPC rain gauge dataset for all seasons except winter. ...

[1]  Jack Kornfield,et al.  A Comparative Study of the Effects of Albedo Change on Drought in Semi-Arid Regions. , 1977 .

[2]  B. N. Meisner,et al.  The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84 , 1987 .

[3]  Kenneth R. Sperber,et al.  Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project , 1996 .

[4]  Richard W. Reynolds,et al.  A Real-Time Global Sea Surface Temperature Analysis , 1988 .

[5]  J. Janowiak,et al.  GPCP Pentad Precipitation analyses: An experimental dataset based on gauge observations and satellite estimates , 2003 .

[6]  G. Meehl,et al.  A Comparison of Soil-Moisture Sensitivity in Two Global Climate Models , 1988 .

[7]  D. Lüthi,et al.  The Soil-Precipitation Feedback: A Process Study with a Regional Climate Model , 1999 .

[8]  R. Spencer Global Oceanic Precipitation from the MSU during 1979—91 and Comparisons to Other Climatologies , 1993 .

[9]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[10]  E. Barrett,et al.  The use of satellite data in rainfall monitoring , 1981 .

[11]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[12]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[13]  D. Legates,et al.  Mean seasonal and spatial variability in gauge‐corrected, global precipitation , 1990 .

[14]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[15]  A. Persson User Guide to ECMWF forecast products , 2001 .

[16]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[17]  P. Xie,et al.  The Global Precipitation Climatology Project: First Algorithm Intercomparison Project , 1994 .

[18]  Jennifer C. Adam,et al.  Adjustment of global gridded precipitation for systematic bias , 2003 .

[19]  Intercomparison of spatial and temporal variability of various precipitation estimates , 1997 .

[20]  Y. Sud,et al.  Influence of Local Land-Surface Processes on the Indian Monsoon: A Numerical Study , 1985 .

[21]  D. Erickson,et al.  Soil Moisture and the Persistence of North American Drought , 1989 .

[22]  Miller,et al.  The Anomalous Rainfall over the United States during July 1993: Sensitivity to Land Surface Parameterization and Soil Moisture Anomalies , 1996 .

[23]  Kuolin Hsu,et al.  Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation , 1999 .

[24]  Thomas J. Jackson,et al.  Estimating soil water‐holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions , 2000 .

[25]  J. Charney Dynamics of deserts and drought in the Sahel , 1975 .

[26]  R. Adler,et al.  Intercomparison of global precipitation products : The third Precipitation Intercomparison Project (PIP-3) , 2001 .

[27]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[28]  R. E. Livezey,et al.  A Comparison of the NCEP-NCAR Reanalysis Precipitation and the GPCP Rain Gauge-Satellite Combined Dataset with Observational Error Considerations , 1998 .

[29]  E. L. Neff How much rain does a rain gage gage , 1977 .

[30]  J. Janowiak,et al.  A Real–Time Global Half–Hourly Pixel–Resolution Infrared Dataset and Its Applications , 2001 .

[31]  Stephen J. Lord,et al.  The New Global Operational Analysis System at the National Meteorological Center , 1991 .

[32]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[33]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[34]  P. Xie,et al.  An Intercomparison of Gauge Observations and Satellite Estimates of Monthly Precipitation , 1995 .

[35]  Robert J. Joyce,et al.  The estimation of global monthly mean rainfall using infrared satellite data: The GOES precipitation index (GPI) , 1994 .

[36]  M. Kanamitsu,et al.  The Comparison of Two Merged Rain Gauge–Satellite Precipitation Datasets , 2000 .

[37]  Donald P. Wylie,et al.  An Application of a Geostationary Satellite Rain Estimation Technique to an Extratropical Area , 1979 .

[38]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using rain gage data under fractional coverage conditions , 1998 .

[39]  Philip E. Ardanuy,et al.  Estimating Climatic-Scale Precipitation from Space: A Review , 1989 .

[40]  J. Augustine,et al.  Satellite Rain Estimation in the U.S. High Plains , 1981 .

[41]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[42]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[43]  J. Shukla,et al.  Influence of Land-Surface Evapotranspiration on the Earth's Climate , 1982, Science.

[44]  Michael Seablom,et al.  Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1 , 1995 .

[45]  Randal D. Koster,et al.  Impact of Land Surface Initialization on Seasonal Precipitation and Temperature Prediction , 2003 .

[46]  Witold F. Krajewski,et al.  Initial Validation of the Global Precipitation Climatology Project Monthly Rainfall over the United States , 2000 .

[47]  Alfred T. C. Chang,et al.  Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions , 1991 .

[48]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[49]  Erich Franz Stocker,et al.  Analysis of TRMM 3-Hourly Multi-Satellite Precipitation Estimates Computed in Both Real and Post-Real Time , 2002 .

[50]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using radar rainfall and rain gage data , 1998 .

[51]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[52]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[53]  D. Rind,et al.  The Influence of Ground Moisture Conditions in North America on Summer Climate as Modeled in the GISS GCM , 1982 .