Multiamorphous Phases in Diketopyrrolopyrrole-Based Conjugated Polymers: From Bulk to Ultrathin Films

The glass transition temperature (Tg) of conjugated polymers is a crucial physical parameter that governs their mechanical and electrical properties for applications from sensor technology to skin-...

[1]  Michael U. Ocheje,et al.  Challenge and Solution of Characterizing Glass Transition Temperature for Conjugated Polymers by Differential Scanning Calorimetry , 2019 .

[2]  J. B. Tok,et al.  Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers , 2019, Advanced materials.

[3]  T. Park,et al.  Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report , 2019, Advanced Functional Materials.

[4]  M. Hütter,et al.  Physical Ageing of Polystyrene: Does Tacticity Play a Role? , 2019, Macromolecules.

[5]  X. Gu,et al.  Glass Transition Phenomenon for Conjugated Polymers , 2019, Macromolecular Chemistry and Physics.

[6]  Jong Won Chung,et al.  Multi-scale ordering in highly stretchable polymer semiconducting films , 2019, Nature Materials.

[7]  Michael U. Ocheje,et al.  The Critical Role of Electron‐Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers , 2019, Advanced Electronic Materials.

[8]  Alexander L. Ayzner,et al.  Semiconducting polymer blends that exhibit stable charge transport at high temperatures , 2018, Science.

[9]  T. Thurn‐Albrecht,et al.  The Underestimated Effect of Intracrystalline Chain Dynamics on the Morphology and Stability of Semicrystalline Polymers , 2018, Macromolecules.

[10]  M. L. Di Lorenzo,et al.  Crystallization-induced formation of rigid amorphous fraction , 2018, Polymer Crystallization.

[11]  C. Schick,et al.  Interplay between Free Surface and Solid Interface Nucleation on Two-Step Crystallization of Poly(ethylene terephthalate) Thin Films Studied by Fast Scanning Calorimetry , 2018, Macromolecules.

[12]  Michael U. Ocheje,et al.  Probing the Viscoelastic Property of Pseudo Free-Standing Conjugated Polymeric Thin Films. , 2018, Macromolecular rapid communications.

[13]  C. Snyder,et al.  Glassy phases in organic semiconductors. , 2018, Current opinion in solid state & materials science.

[14]  N. Stingelin,et al.  Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. , 2018, The journal of physical chemistry letters.

[15]  S. Napolitano,et al.  Characterization of Adsorbed Polymer Layers: Preparation, Determination of the Adsorbed Amount and Investigation of the Kinetics of Irreversible Adsorption , 2018 .

[16]  Yaojun Chen,et al.  Molecular weight and interfacial effect on the kinetic stabilization of ultrathin polystyrene films , 2018 .

[17]  F. Spano,et al.  Sequential Doping Reveals the Importance of Amorphous Chain Rigidity in Charge Transport of Semi-Crystalline Polymers. , 2017, The journal of physical chemistry letters.

[18]  Jianguo Mei,et al.  Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo-alt-Bithiophene Based Polymer Thin Films. , 2017, ACS applied materials & interfaces.

[19]  R. Colby,et al.  Glass Transition Temperature of Conjugated Polymers by Oscillatory Shear Rheometry , 2017 .

[20]  Jonathan A. Campbell,et al.  Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells , 2017 .

[21]  Adam D. Printz,et al.  Measuring the Glass Transition Temperature of Conjugated Polymer Films with Ultraviolet–Visible Spectroscopy , 2017 .

[22]  Boris Murmann,et al.  Highly stretchable polymer semiconductor films through the nanoconfinement effect , 2017, Science.

[23]  Jianhui Hou,et al.  Structural Transitions in Solution-Cast Films of a New AABB Type Thiophene Copolymer , 2016 .

[24]  A. Rinscheid,et al.  Crystallinity of poly(3‐hexylthiophene) in thin films determined by fast scanning calorimetry , 2016 .

[25]  Rodney D. Priestley,et al.  Direct measurement of glass transition temperature in exposed and buried adsorbed polymer nanolayers , 2016 .

[26]  T. Lan,et al.  Fragility-Confinement Effects: Apparent Universality as a Function of Scaled Thickness in Films of Freely Deposited, Linear Polymer and Its Absence in Densely Grafted Brushes , 2016 .

[27]  K. Müllen,et al.  Mobility Exceeding 10 cm2/(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport , 2016 .

[28]  M. Mackay,et al.  Three-Phase Morphology of Semicrystalline Polymer Semiconductors: A Quantitative Analysis. , 2015, ACS macro letters.

[29]  C. Müller On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability , 2015 .

[30]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[31]  R. Segalman,et al.  Formation of a Rigid Amorphous Fraction in Poly(3-(2'-ethyl)hexylthiophene). , 2014, ACS macro letters.

[32]  Yong-Young Noh,et al.  A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm(2)/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. , 2014, Journal of the American Chemical Society.

[33]  Jie Xu,et al.  Effect of Molecular Chain Architecture on Dynamics of Polymer Thin Films Measured by the Ac-Chip Calorimeter , 2014 .

[34]  P. Sun,et al.  Thickness Dependence of Glass Transitions Measured by AC-Chip Calorimetry in Films with Controlled Interface , 2013 .

[35]  Hui Deng,et al.  Fragility is a Key Parameter in Determining the Magnitude of Tg-Confinement Effects in Polymer Films , 2013 .

[36]  S. Simon,et al.  Calorimetric Glass Transition of Single Polystyrene Ultrathin Films , 2013 .

[37]  David G Lidzey,et al.  Competition between substrate-mediated π-π stacking and surface-mediated Tg depression in ultrathin conjugated polymer films , 2012, The European physical journal. E, Soft matter.

[38]  T. Ngo,et al.  Glass transition of PCBM, P3HT and their blends in quenched state , 2012 .

[39]  R. Rubio,et al.  X-ray diffraction, calorimetric, and dielectric relaxation study of the amorphous and smectic states of a main chain liquid crystalline polymer. , 2012, The journal of physical chemistry. B.

[40]  Á. Alegría,et al.  Enthalpy Recovery in Nanometer to Micrometer Thick Polystyrene Films , 2012 .

[41]  T. Russell,et al.  A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics , 2012 .

[42]  H. Yin,et al.  T g depression and invariant segmental dynamics in polystyrene thin films , 2012 .

[43]  Donghoon Choi,et al.  2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5'-di(thiophen-2-yl)-2,2'-biselenophene exhibiting 1.5 cm2·V(-1)·s(-1) hole mobility in thin-film transistors. , 2011, Journal of the American Chemical Society.

[44]  R. Janssen,et al.  Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells , 2011 .

[45]  A. Donald,et al.  A Phase Diagram of the P3HT:PCBM Organic Photovoltaic System: Implications for Device Processing and Performance , 2011 .

[46]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[47]  M. L. Lorenzo The melting process and the rigid amorphous fraction of cis-1,4-polybutadiene , 2009 .

[48]  M. Beiner,et al.  Side-Chain Dynamics and Crystallization in a Series of Regiorandom Poly(3-alkylthiophenes) , 2009 .

[49]  C. Frisbie,et al.  Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends , 2008 .

[50]  C. Schick,et al.  Calorimetric Glass Transition of Poly(2,6-dimethyl-1,5-phenylene oxide) Thin Films , 2008 .

[51]  A. Lejardi,et al.  Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions , 2008 .

[52]  J. Mano,et al.  Mobile amorphous phase fragility in semi-crystalline polymers: Comparison of PET and PLLA , 2007 .

[53]  F. Kremer,et al.  Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films , 2007 .

[54]  C. Schick,et al.  Differential AC‐chip calorimeter for glass transition measurements in ultrathin films , 2006 .

[55]  Li Liu,et al.  Mixed Molecular Brushes with PLLA and PS Side Chains Prepared by AGET ATRP and Ring-Opening Polymerization , 2006 .

[56]  A. S. Gupta,et al.  Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study , 2005 .

[57]  M. Beiner,et al.  Nanophase separation and hindered glass transition in side-chain polymers , 2003, Nature materials.

[58]  T. Fukuda,et al.  Glass transition temperatures of high-density poly(methyl methacrylate) brushes , 2002 .

[59]  K. Ngai,et al.  THE APPLICATION OF THE ENERGY LANDSCAPE MODEL TO POLYMERS , 1999 .

[60]  B. Wunderlich,et al.  Modulated differential scanning calorimetry in the glass transition region , 1996 .

[61]  C. Angell Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems☆ , 1991 .

[62]  B. Wunderlich,et al.  Glass transition of poly(oxymethylene) , 1985 .

[63]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[64]  M. J. Hill,et al.  Free‐volume variation in polyethylenes of different crystallinities: Positron lifetime, density, and X‐ray studies , 2002 .