Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV

Significant advances in meso-scale prototyping are enabling rigid, articulated, and actuated microrobotic structures. Here, an elegant manufacturing paradigm is employed for the creation of a biologically- inspired flapping-wing micro air vehicle with similar dimensions to Dipteran insects. A novel wing transmission system is presented which contains one actuated and two passive degrees of freedom. The design and fabrication are detailed and the performance of the resulting structure is elucidated highlighting two key metrics: the wing trajectory and the thrust generated.

[1]  Robert J. Wood,et al.  Flight force measurements for a micromechanical flying insect , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[2]  Robert J. Wood,et al.  Towards flapping wing control for a micromechanical flying insect , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Ronald S. Fearing,et al.  Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[5]  Ronald S. Fearing,et al.  Flexure Design Rules for Carbon Fiber Microrobotic Mechanisms , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[6]  A. Ewing,et al.  Is the ‘Click’ Mechanism of Dipteran Flight an Artefact of CC14 Anaesthesia? , 1985 .

[7]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  W. Nachtigall,et al.  The biomechanics of insect flight. Form, function, and evolution: Robert Dudley; Princeton University Press, Princeton, NJ , 2003 .

[9]  Robert J. Wood,et al.  Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Robert J. Wood,et al.  Lift force improvements for the micromechanical flying insect , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[11]  M. Goldfarb,et al.  The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles , 2002 .

[12]  Ephrahim Garcia,et al.  Development of piezoelectrically actuated micro-aerial vehicles , 1999, Optics East.

[13]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[14]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[15]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[16]  W. Gronenberg Fast actions in small animals: springs and click mechanisms , 1996, Journal of Comparative Physiology A.

[17]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Robert J. Wood,et al.  Microrobotics using composite materials: the micromechanical flying insect thorax , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .