Optimal eighth-order multiple root finding iterative methods using bivariate weight function

[1]  Janak Raj Sharma,et al.  An excellent numerical technique for multiple roots , 2021, Math. Comput. Simul..

[2]  Janak Raj Sharma,et al.  An Efficient Class of Weighted-Newton Multiple Root Solvers with Seventh Order Convergence , 2019, Symmetry.

[3]  Alicia Cordero,et al.  Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics , 2018, J. Comput. Appl. Math..

[4]  Alicia Cordero,et al.  Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters , 2018, Journal of Mathematical Chemistry.

[5]  Alicia Cordero,et al.  An eighth-order family of optimal multiple root finders and its dynamics , 2018, Numerical Algorithms.

[6]  Ramandeep Behl,et al.  An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence , 2018, Journal of Mathematical Chemistry.

[7]  Rajni Sharma,et al.  Optimal eighth order convergent iteration scheme based on Lagrange interpolation , 2017 .

[8]  Ramandeep Behl,et al.  An Optimal Eighth-Order Scheme for Multiple Zeros of Univariate Functions , 2017, International Journal of Computational Methods.

[9]  Young Hee Geum,et al.  A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points , 2016, Appl. Math. Comput..

[10]  Young Hee Geum,et al.  A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics , 2015, Appl. Math. Comput..

[11]  Rajni Sharma,et al.  General Family of Third Order Methods for Multiple Roots of Nonlinear Equations and Basin Attractors for Various Methods , 2014, Adv. Numer. Anal..

[12]  Fazlollah Soleymani,et al.  On a numerical technique for finding multiple zeros and its dynamic , 2013 .

[13]  Baoqing Liu,et al.  A new family of fourth-order methods for multiple roots of nonlinear equations , 2013 .

[14]  Xin Chen,et al.  Families of third and fourth order methods for multiple roots of nonlinear equations , 2013, Appl. Math. Comput..

[15]  Fazlollah Soleymani,et al.  Finding the solution of nonlinear equations by a class of optimal methods , 2012, Comput. Math. Appl..

[16]  Changbum Chun,et al.  Basin attractors for various methods , 2011, Appl. Math. Comput..

[17]  Yongzhong Song,et al.  Constructing higher-order methods for obtaining the multiple roots of nonlinear equations , 2011, J. Comput. Appl. Math..

[18]  Rajni Sharma,et al.  Modified Jarratt method for computing multiple roots , 2010, Appl. Math. Comput..

[19]  J. L. Varona,et al.  Graphic and numerical comparison between iterative methods , 2002 .

[20]  Sunethra Weerakoon,et al.  A variant of Newton's method with accelerated third-order convergence , 2000, Appl. Math. Lett..

[21]  R. F. King,et al.  A secant method for multiple roots , 1977 .

[22]  H. T. Kung,et al.  Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.

[23]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .

[24]  Miodrag S. Petkovic,et al.  Multipoint methods for solving nonlinear equations: A survey , 2014, Appl. Math. Comput..

[25]  Changbum Chun,et al.  Basin attractors for various methods for multiple roots , 2012, Appl. Math. Comput..