Delta doping in silicon

Abstract Two-dimensional doping sheets (“δ-doping”) are integral parts of many novel semiconductor device concepts. Their practical realization in silicon (Si), however, was long delayed by the difficulty to introduce dopants into Si in a well-controlled way during epitaxial growth. Recent advances in the understanding of epitaxial growth and the incorporation of dopants in Si have overcome these difficulties and opened a new field in Si materials and device research. In this article, we review the growth, processing, and characterization of epitaxially grown 5-doped Si. Furthermore, we discuss the electronic subband states of such structures. Finally, we give an overview of device concepts that use 5-doping and analyze their properties.

[1]  J. V. D. Veen Ion beam crystallography of surfaces and interfaces , 1985 .

[2]  S. Kalbitzer,et al.  LOW-ENERGY BORON AND PHOSPHORUS IMPLANTS IN SILICON. A. ELECTRICAL SHEET MEASUREMENTS. , 1970 .

[3]  T. Tatsumi,et al.  (√3×√3)B structure on a (5×5)GexSi1−x/Si (111) surface , 1990 .

[4]  I. Eisele,et al.  Infrared excitation of the subbands of A δ-layer in GaAs and Si , 1990 .

[5]  Electrical characterization of epitaxial silicon deposited at low temperatures by plasma-enhanced chemical vapor deposition , 1985, IEEE Electron Device Letters.

[6]  Miko Marinov,et al.  Effect of ion bombardment on the initial stages of thin film growth , 1977 .

[7]  S. Banerjee,et al.  Remote plasma-enhanced CVD of silicon: Reaction kinetics as a function of growth parameters , 1990 .

[8]  H. Jorke,et al.  Boron delta doping in Si and Si0.8Ge0.2 layers , 1990 .

[9]  R. Tromp,et al.  Angle resolved detection of charged particles with a novel type toroidal electrostatic analyser , 1982 .

[10]  Y. Ota Silicon molecular beam epitaxy with simultaneous ion implant doping , 1980 .

[11]  A. Christou,et al.  Solid phase epitaxial regrowth of amorphous silicon on molecular beam epitaxial silicon/Si layers , 1983 .

[12]  M. Brett,et al.  Deposition of metastable binary alloy thin films using sequential ion beams from a single ion source , 1986 .

[13]  J. Comfort,et al.  In situ arsenic doping of epitaxial silicon at 800 °C by plasma enhanced chemical vapor deposition , 1987 .

[14]  F. Schäffler,et al.  Gallium doping of silicon molecular beam epitaxial layers at low temperatures and under Si+ ion bombardment , 1990 .

[15]  Michael Liehr,et al.  Kinetics of silicon epitaxy using SiH4 in a rapid thermal chemical vapor deposition reactor , 1990 .

[16]  Y. Furumura,et al.  Low-temperature epitaxy using Si2H6 , 1990 .

[17]  R. Reif,et al.  Low‐temperature silicon epitaxy using low pressure chemical vapor deposition with and without plasma enhancement , 1984 .

[18]  C.A. King,et al.  Electrical characterization of in-situ epitaxially grown Si p-n junctions fabricated using limited reaction processing , 1988, IEEE Electron Device Letters.

[19]  Y. Torii,et al.  Low‐temperature film growth of Si by reactive ion beam deposition , 1987 .

[20]  E. Ganin,et al.  Low temperature silicon epitaxy by hot wall ultrahigh vacuum/low pressure chemical vapor deposition techniques: surface optimization , 1986 .

[21]  F. G. Allen,et al.  Evaporative antimony doping of silicon during molecular beam epitaxial growth , 1984 .

[22]  J. Bean,et al.  Silicon Molecular Beam Epitaxy , 1988 .

[23]  Y. Ota n‐Type Doping Techniques in Silicon Molecular Beam Epitaxy by Simultaneous Arsenic Ion Implantation and by Antimony Evaporation , 1979 .

[24]  J. Zhang,et al.  p‐type delta‐doped layers in silicon: Structural and electronic properties , 1990 .

[25]  K. West,et al.  Dopant distribution for maximum carrier mobility in selectively doped Al0.30Ga0.70As/GaAs heterostructures , 1989 .

[26]  H. Jorke,et al.  Mobility Enhancement in Modulation‐Doped Si ‐ Si1 − x Ge x Superlattice Grown by Molecular Beam Epitaxy , 1986 .

[27]  W. Tsang Chemical beam epitaxy of InP and GaAs , 1984 .

[28]  S. Chandrasekhar,et al.  InP/InGaAs double heterojunction bipolar transistors grown by metalorganic vapor phase epitaxy with sulfur delta doping in the collector region , 1990 .

[29]  G. Döhler,et al.  Compositional and doping superlattices in III-V semiconductors , 1983 .

[30]  B. Meyerson,et al.  High hole mobility in Si/Si1−xGex/Si p‐type modulation‐doped double heterostructures , 1989 .

[31]  Maki Suemitsu,et al.  High Quality Silicon Epitaxy at 500°C using Silane Gas-Source Molecular Beam Technique , 1989 .

[32]  W. Y. Leong,et al.  Potential enhanced Sb and As doping in Si molecular beam epitaxy , 1985 .

[33]  A. P. Hale Preparation and evaluation of epitaxial silicon films prepared by vacuum evaporation , 1963 .

[34]  G. E. Thomas,et al.  Ion beam epiplantation , 1982 .

[35]  S. Kalbitzer,et al.  Rutherford Backscattering Analysis with Very High Depth Resolution Using an Electrostatic Analysing System , 1976 .

[36]  G. Timp,et al.  Selectively δ‐doped AlxGa1−xAs/GaAs heterostructures with high two‐dimensional electron‐gas concentrations n2DEG≥1.5×1012 cm−2 for field‐effect transistors , 1987 .

[37]  R. Thomas,et al.  A LEED STUDY OF THE HOMOEPITAXIAL GROWTH OF THICK SILICON FILMS , 1967 .

[38]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[39]  T. Takagi,et al.  Ion–surface interactions during thin film deposition , 1984 .

[40]  Tadahiro Ohmi,et al.  In situ substrate‐surface cleaning for very low temperature silicon epitaxy by low‐kinetic‐energy particle bombardment , 1988 .

[41]  E. Handelman,et al.  Epitaxial Growth of Silicon by Vacuum Sublimation , 1964 .

[42]  J. Bean CHAPTER 4 - Growth of Doped Silicon Layers by Molecular Beam Epitaxy , 1981 .

[43]  G. Booker,et al.  Growth of epitaxial silicon layers by vacuum evaporation: II. initial nucleation and growth , 1965 .

[44]  S. T. Picraux,et al.  4 – Selected Low Energy Nuclear Reaction Data , 1977 .

[45]  B. Joyce The growth and structure of semiconducting thin films , 1974 .

[46]  T. Tatsumi,et al.  Gas source silicon molecular beam epitaxy using disilane , 1987 .

[47]  Leon Esterowitz,et al.  Efficient room-temperature operation of Cr3+-sensitized, flashlamp-pumped, 2µm lasers , 1990 .

[48]  F. Jona Low-Energy-Electron Diffraction Study of the Epitaxy of Si on Si , 1967 .

[49]  F. G. Allen,et al.  Boron doping in Si molecular beam epitaxy by co‐evaporation of B2O3 or doped silicon , 1986 .

[50]  J. Comfort,et al.  Chemical Vapor Deposition of Epitaxial Silicon from Silane at Low Temperatures I . Very Low Pressure Deposition , 1989 .

[51]  G. E. Thomas,et al.  Ion cluster beam deposition of silver and germanium on silicon , 1981 .

[52]  K. Nakagawa,et al.  Atomic layer doped field‐effect transistor fabricated using Si molecular beam epitaxy , 1989 .

[53]  T. Takagi,et al.  An evaluation of metal and semiconductor films formed by ionized-cluster beam deposition , 1976 .

[54]  Ken Yamaguchi,et al.  A New Short Channel MOSFET with an Atomic-Layer-Doped Impurity-Profile (ALD-MOSFET) , 1983 .

[55]  Richard B. Fair,et al.  Concentration Profiles of Diffused Dopants in Silicon , 1981 .

[56]  R. Thomas,et al.  Low-temperature epitaxial growth of doped silicon films and junctions , 1969 .

[57]  E. Kornelsen THE IONIC ENTRAPMENT AND THERMAL DESORPTION OF INERT GASES IN TUNGSTEN FOR KINETIC ENERGIES OF 40 EV TO 5 KEV , 1964 .

[58]  T. Takagi,et al.  Ionized-Cluster Beam Deposition , 1975 .

[59]  Gossmann,et al.  Initial stages of silicon molecular-beam epitaxy: Effects of surface reconstruction. , 1985, Physical review. B, Condensed matter.

[60]  M. Jarrold,et al.  An investigation of cluster formation in an ionized cluster beam deposition source , 1991 .

[61]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[62]  A. Fischer,et al.  The delta-doped field-effect transistor (δFET) , 1986, IEEE Transactions on Electron Devices.

[63]  E. Kasper,et al.  Properties of Si layers grown by molecular beam epitaxy at very low temperatures , 1989 .

[64]  P. Blood,et al.  The electrical characterisation of semiconductors , 1978 .

[65]  James C. Sturm,et al.  Thin, highly doped layers of epitaxial silicon deposited by limited reaction processing , 1986 .

[66]  T. Shiimoto,et al.  Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C , 1986 .

[67]  U. Konig,et al.  Molecular beam epitaxy of silicon: Effects of heavy Sb doping , 1981 .

[68]  J. Maes,et al.  Sharp boron spikes in silicon grown by fast gas switching chemical vapor deposition , 1991 .

[69]  T. Takagi,et al.  Transparent carbon film prepared by mass‐separated negative‐carbon‐ion‐beam deposition , 1987 .

[70]  K. Nakagawa,et al.  Growth and characterization of atomic layer doping structures in Si , 1989 .

[71]  J. Venables,et al.  CHAPTER 4 – NUCLEATION OF THIN FILMS , 1975 .

[72]  John E. Cunningham,et al.  Delta-doped ohmic contacts to n-GaAs , 1986 .

[73]  J. V. D. Veen,et al.  Structural characterization of an Sb delta‐doping layer in silicon , 1989 .

[74]  T. E. Haynes,et al.  Heteroepitaxy of 76Ge films on GaAs by direct deposition from a low‐energy ion beam , 1989 .

[75]  Y. Shiraki,et al.  Molecular beam and solid-phase epitaxies of silicon under ultra-high vacuum , 1978 .

[76]  L. T. Chadderton,et al.  On the annealing of damage produced by copper ion implantation of silicon single crystals , 1971 .

[77]  D. P. Kennedy,et al.  On the measurement of impurity atom distributions in silicon by the differential capacitance technique , 1968 .

[78]  Leonard C. Feldman,et al.  Materials analysis by ion channeling , 1982 .

[79]  R. Thomas,et al.  LOW‐TEMPERATURE EPITAXIAL GROWTH OF PN JUNCTIONS BY UHV SUBLIMATION , 1968 .

[80]  B. Ocko,et al.  Capillary waves on the surface of simple liquids measured by x-ray reflectivity. , 1988, Physical review. A, General physics.

[81]  James C. Sturm,et al.  Minority‐carrier properties of thin epitaxial silicon films fabricated by limited reaction processing , 1986 .

[82]  I. Eisele,et al.  Delta‐Doped MESFET with MBE‐Grown Si , 1989 .

[83]  K. Müller Cluster‐beam deposition of thin films: A molecular dynamics simulation , 1987 .

[84]  K. A. Pickar,et al.  Ion Implantation in Silicon—Physics, Processing, and Microelectronic Devices , 1975 .

[85]  J. Comfort,et al.  Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures. I. Arsenic doping , 1989 .

[86]  Tadahiro Ohmi,et al.  Formation of device‐grade epitaxial silicon films at extremely low temperatures by low‐energy bias sputtering , 1989 .

[87]  J. Mizuki,et al.  Interfacial superstructures studied by grazing incidence x-ray diffraction , 1990 .

[88]  T. Itoh,et al.  Antimony Concentration in Silicon Epitaxial Layer Formed by Partially Ionized Vapor Deposition , 1976 .

[89]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[90]  T. Tatsumi,et al.  Surface Segregation at Boron Planar Doping in Silicon Molecular Beam Epitaxy , 1988 .

[91]  John C. Bean,et al.  Modulation doping in GexSi1−x/Si strained layer heterostructures , 1984 .

[92]  R. Malik,et al.  A planar-doped 2D-hole gas base AlGaAs/GaAs heterojunction bipolar transistor grown by molecular beam epitaxy , 1988, IEEE Electron Device Letters.

[93]  H. Usui,et al.  Vaporized-metal cluster formation and effect of kinetic energy of ionized clusters on film formation , 1982 .

[94]  D. Lang,et al.  Modulation doping in Ge(x)Si(1-x)/Si strained layer heterostructures: Effects of alloy layer thickness, doping setback, and cladding layer dopant concentration , 1985 .

[95]  M. Denhoff Boron evaporator for doping silicon thin films , 1990 .

[96]  S. J. Bass Silicon and germanium doping of epitaxial gallium arsenide grown by the trimethylgallium-arsine method , 1979 .

[97]  W. Gibson,et al.  CHANNELING STUDY OF BORON‐IMPLANTED SILICON , 1970 .

[98]  K. Nakagawa,et al.  MBE-Related Surface Segregation of Dopant Atoms in Silicon , 1988 .

[99]  L. Esaki,et al.  A bird's-eye view on the evolution of semiconductor superlattices and quantum wells , 1986 .

[100]  F. G. Allen,et al.  Sharp profiles with high and low doping levels in silicon grown by molecular beam epitaxy , 1981 .

[101]  Don Monroe,et al.  Extremely high electron mobility in Si/GexSi1−x structures grown by molecular beam epitaxy , 1991 .

[102]  Remote Plasma-Enhanced Chemical Vapor Deposition of Epitaxial Silicon on Silicon (100) at 150°C , 1989 .

[103]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[104]  L. Feldman,et al.  Low‐temperature homoepitaxy on Si(111) , 1991 .

[106]  H. Jorke,et al.  Secondary implantation of Sb into Si molecular beam epitaxy layers , 1985 .

[107]  Wolf,et al.  Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1-x superlattices. , 1985, Physical review letters.

[108]  Tadashi Shibata,et al.  Electrical characterization of epitaxial silicon films formed by a low kinetic energy particle process , 1989 .

[109]  J. Knall,et al.  Incorporation of in by recoil implantation during MBE growth of Si(100) , 1989 .

[110]  R. Reif,et al.  Electrical quality of low‐temperature (Tdep=775 °C) epitaxial silicon: The effect of deposition rate , 1988 .

[111]  A. Blakeslee,et al.  Man-made superlattice crystals , 1970 .

[112]  Richard B. Fair,et al.  Modeling Rapid Thermal Diffusion of Arsenic and Boron in Silicon , 1984 .

[113]  T. Tokuyama,et al.  Germanium and Silicon Film Growth by Low-Energy Ion Beam Deposition , 1977 .

[114]  A. Rockett,et al.  Annealing studies of highly doped boron superlattices , 1989 .

[115]  W. Smeltzer,et al.  Transition from Internal Sulfidation to External Scale Growth on Fe‐Al Alloys at 1173 K , 1985 .

[116]  T. E. Seidel,et al.  SOME PROPERTIES OF ION IMPLANTED BORON IN SILICON. , 1969 .

[117]  Tadahiro Ohmi,et al.  Low-temperature silicon epitaxy by low-energy bias sputtering , 1988 .

[118]  S. Pennycook,et al.  Ion Beam Deposition of Materials At 40–200 Ev: Effect of Ion Energy And Substrate Temperature On Interface, Thin Film And Damage Formation , 1985 .

[119]  G. E. Becker,et al.  Acceptor dopants in silicon molecular‐beam epitaxy , 1977 .

[120]  E. Parker,et al.  Potential‐Enhanced Doping of Si Grown by Molecular Beam Epitaxy , 1985 .

[121]  T. Tatsumi,et al.  Structure of (√3×√3) R 30°‐B at the Si interface studied by grazing incidence x‐ray diffraction , 1990 .

[122]  Gottfried H. Döhler,et al.  Electrical and Optical Properties of Crystals with “nipi‐Superstructure” , 1972 .

[123]  H. Jorke Surface segregation of Sb on Si(100) during molecular beam epitaxy growth , 1988 .

[124]  Rafael Reif,et al.  Silicon epitaxy at 650–800 °C using low‐pressure chemical vapor deposition both with and without plasma enhancement , 1985 .

[125]  T. Sugii,et al.  Growth Conditions of Deposited Si Films in Solid Phase Epitaxy , 1981 .

[126]  S. Kalbitzer,et al.  Low energy boron and phosphorus implants in silicon (b) doping profiles , 1970 .

[127]  F. Schäffler,et al.  ELECTRICAL PROPERTIES OF GALLIUM- AND ANTIMONY-DOPED SILICON LAYERS, GROWN BY SOLID PHASE EPITAXY IN A MOLECULAR BEAM EPITAXIAL GROWTH CHAMBER , 1989 .

[128]  B. Put,et al.  Influence of AsH3, PH 3,and B 2 H 6 on the Growth Rate and Resistivity of Polycrystalline Silicon Films Deposited from a SiH4 ‐ H 2 Mixture , 1973 .

[129]  Kang L. Wang,et al.  Boron surface segregation in silicon molecular beam epitaxy , 1988 .

[130]  T. Takagi,et al.  Ionized-cluster beam deposition and epitaxy as fabrication techniques for electron devices☆ , 1977 .

[131]  Tadahiro Ohmi,et al.  Crystal structure analysis of epitaxial silicon films formed by a low kinetic energy particle process , 1989 .

[132]  T. Pearsall,et al.  Enhancement- and depletion-mode p-channel GexSi1-xmodulation-doped FET's , 1986, IEEE Electron Device Letters.

[133]  H. Jorke,et al.  Doping by Secondary Implantation , 1986 .

[134]  L. Smit,et al.  The use of pulsed laser irradiation in silicon molecular beam epitaxy: A comparative low energy electron diffraction study , 1983 .

[135]  G. Srinivasan,et al.  Current Status of Reduced Temperature Silicon Epitaxy by Chemical Vapor Deposition , 1987 .

[136]  J. Knall,et al.  Electrical properties of Si films doped with 200‐eV In+ ions during growth by molecular‐beam epitaxy , 1989 .

[137]  R. R. O'Brien,et al.  On the measurement of impurity atom distributions by the differential capacitance technique , 1969 .

[138]  T. Shibata,et al.  Low temperature, defect-free silicon epitaxy using a low kinetic energy particle process , 1990 .

[139]  Y. Ota Silicon molecular beam epitaxy , 1983 .

[141]  R. Kopf,et al.  Spatial resolution of the capacitance‐voltage profiling technique on semiconductors with quantum confinement , 1990 .

[142]  K. Ploog Molecular Beam Epitaxy of III-V Compounds: Technology and Growth Process , 1981 .

[143]  I. Eisele,et al.  Infrared resonance excitation of δ-layers-a silicon-based infrared quantum-well detector , 1990 .

[144]  Federico Capasso,et al.  Doping interface dipoles: Tunable heterojunction barrier heights and band‐edge discontinuities by molecular beam epitaxy , 1985 .

[145]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[146]  J. Greene,et al.  Photoluminescence studies of Si(100) doped with low-energy (100-1000 eV) B+ ions during molecular beam epitaxy , 1989 .

[147]  M. Cerullo,et al.  Low‐temperature Si molecular beam epitaxy: Solution to the doping problem , 1990 .

[148]  T. Deguchi,et al.  Low Temperature Silicon Epitaxy Using Si2 H 6 , 1987 .

[149]  W. Y. Leong,et al.  p‐type doping in Si molecular beam epitaxy by coevaporation of boron , 1984 .

[150]  R. Swartz,et al.  A technique for rapidly alternating boron and arsenic doping in ion‐implanted silicon molecular beam epitaxy , 1982 .

[151]  Y. Shiraki Silicon molecular beam epitaxy , 1985 .

[152]  Martin L. Green,et al.  High‐quality homoepitaxial silicon films deposited by rapid thermal chemical vapor deposition , 1989 .

[153]  D. Kahng,et al.  Impurity Distribution in Epitaxial Silicon Films , 1962 .

[154]  T. Sakamoto,et al.  High Impurity Doping in Si-MBE Using Liquid Ga Ion Source , 1983 .

[155]  D. C. Gupta,et al.  Silicon Epitaxial Layers with Abrupt Interface Impurity Profiles , 1969 .

[156]  J. V. D. Veen,et al.  The interaction of Sb overlayers with Si(001) , 1992 .

[157]  R. Thomas,et al.  Influence of impurities on the surface structures and fault generation in homoepitaxial Si (111) films , 1971 .

[158]  L. Eastman,et al.  Complex free‐carrier profile synthesis by ’’atomic‐plane’’ doping of MBE GaAs , 1980 .

[159]  R. Fathauer,et al.  Heavily boron‐doped Si layers grown below 700 °C by molecular beam epitaxy using a HBO2 source , 1989 .

[160]  F. G. Allen,et al.  Antimony adsorption on silicon , 1984 .

[161]  Jerome J. Cuomo,et al.  Quantitative ion beam process for the deposition of compound thin films , 1983 .

[162]  J. Bean Arbitrary doping profiles produced by Sb‐doped Si MBE , 1978 .

[163]  D. Houghton,et al.  Oxygen incorporation in molecular‐beam epitaxial silicon doped using a boric oxide source , 1988 .

[164]  S. Pennycook,et al.  Ion-solid interactions during ion beam deposition of 74Ge and 30Si on Si at very low ion energies (0–200 eV range)☆ , 1986 .

[165]  B. Meyerson,et al.  Two‐dimensional hole gas in Si/Si0.85Ge0.15/Si modulation‐doped double heterostructures , 1989 .

[166]  K. Nakagawa,et al.  Controlled Atomic Layer Doping and ALD MOSFET Fabrication in Si , 1987 .

[167]  K. Ploog,et al.  The δ-Doped Field-Effect Transistor , 1985 .

[168]  H. Sugiura Silicon molecular beam epitaxy with antimony ion doping , 1980 .

[169]  J. Tietjen Chemical Vapor Deposition of Electronic Materials , 1973 .

[170]  G. Booker,et al.  Growth of epitaxial silicon layers by vacuum evaporation , 1964 .

[171]  I. Suemune,et al.  Two-Dimensionally Collimated Output Beam from GaAlAs Diode Lasers with Two-Dimensional Distributed Bragg Reflectors , 1983 .

[172]  Tatsuya Yamazaki,et al.  Heavy Boron Doping in Low‐Temperature Si Photoepitaxy , 1990 .

[173]  H. Widmer EPITAXIAL GROWTH OF Si ON Si IN ULTRA HIGH VACUUM , 1964 .

[174]  R. Frieser Low‐Temperature Silicon Epitaxy , 1968 .

[175]  L. R. Weisberg Low‐Temperature Vacuum Deposition of Homoepitaxial Silicon , 1967 .

[176]  M. Denhoff,et al.  Structural properties of ultrathin arsenic‐doped layers in silicon , 1989 .

[177]  P. Zalm,et al.  Ion beam epitaxy of silicon on Ge and Si at temperatures of 400 K , 1982 .

[178]  Gerhard Abstreiter,et al.  High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer , 1992 .

[179]  R. Reif,et al.  An optimized in situ argon sputter cleaning process for device quality low‐temperature (T≤800 °C) epitaxial silicon: Bipolar transistor and pn junction characterization , 1987 .

[180]  Gottfried H. Döhler,et al.  Electron States in Crystals with “nipi‐Superstructure” , 1972 .

[181]  U. Konig,et al.  Si–MBE: Growth and Sb doping , 1979 .

[182]  A. E. Michel,et al.  Implantation damage and the anomalous transient diffusion of ion‐implanted boron , 1987 .

[183]  R. Fathauer,et al.  Maximum boron doping concentrations without oxygen incorporation for silicon molecular beam epitaxy using HBO2 and B2O3 as dopant sources , 1990 .

[184]  I. Eisele,et al.  Modulation-doped superlattices with delat layers in silicon , 1990 .

[185]  W. Y. Leong,et al.  Enhanced sticking coefficients and improved profile control using boron and antimony as coevaporated dopants in Si–MBE , 1985 .

[186]  Ion beam enhanced diffusion of B during Si molecular beam epitaxy , 1989 .

[187]  M. Hopkinson,et al.  P-type delta doping in silicon MBE , 1990 .

[188]  S. Barnett,et al.  Si molecular beam Epitaxy: A model for temperature dependent incorporation probabilities and depth distributions of dopants exhibiting strong surface segregation , 1985 .

[189]  H. Kibbel,et al.  The n-channel SiGe/Si modulation-doped field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[190]  Y. Ota Si Molecular Beam Epitaxy (n on n+) with Wide Range Doping Control , 1977 .

[191]  Greene,et al.  Kinetics of dopant incorporation using a low-energy antimony ion beam during growth of Si(100) films by molecular-beam epitaxy. , 1989, Physical review. B, Condensed matter.

[192]  K. Shono,et al.  Boltzmann‐Matano Analysis of Boron Profiles in Silicon , 1984 .

[193]  H. Kersten,et al.  Experimental parameters for quantitative surface analysis by medium energy ion scattering , 1976 .

[194]  S. Li,et al.  Theoretical analysis of hall factor and hall mobility in p-type silicon☆ , 1981 .

[195]  Ludwig Boltzmann,et al.  Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten , 1894 .

[196]  H. Reisinger,et al.  Growth and characterization of a delta‐function doping layer in Si , 1987 .

[197]  B. Meyerson,et al.  High Mobility Two-Dimensional Electron Gas in Modulation-Doped Si/SiGe Heterostructures , 1991 .

[198]  H. Schut,et al.  Positron beam defect profiling of silicon epitaxial layers , 1991 .

[199]  J. Knall,et al.  Adsorption and desorption kinetics of In on Si(100) , 1989 .

[200]  M. Ogirima,et al.  Low Pressure Silicon Epitaxy , 1977 .

[201]  F. G. Allen,et al.  Doping of silicon in molecular beam epitaxy systems by solid phase epitaxy , 1984 .

[202]  R. Bennett,et al.  Determination of diffusion, partition and sticking coefficients for boron, phosphorus and antimony in silicon , 1975 .

[203]  G. Dearnaley,et al.  The origin of non‐Gaussian profiles in phosphorus‐implanted silicon , 1974 .

[204]  D. K. Bowen,et al.  Elemental boron and antimony doping of MBE Si and SiGe structures grown at temperatures below 600°C , 1991 .

[205]  J. Poate,et al.  Evidence for void interconnection in evaporated amorphous silicon from epitaxial crystallization measurements , 1980 .

[206]  A. Rockett,et al.  Incorporation of accelerated low-energy (50-500 eV) In + ions in Si(100) films during growth by molecular-beam epitaxy , 1989 .

[207]  J. V. D. Veen,et al.  X‐ray reflectivity of an Sb delta‐doping layer in silicon , 1990 .

[208]  T. Tokuyama,et al.  Germanium and silicon ion beam deposition , 1982 .

[209]  L. Feldman,et al.  Stability of boron- and gallium-induced surface structures on Si(111) during deposition and epitaxial growth of silicon , 1989 .

[210]  Kang L. Wang,et al.  Hole intersubband absorption in δ‐doped multiple Si layers , 1991 .

[211]  E. Kasper,et al.  Characterization of Ga-doped solid phase — MBE silicon , 1985 .

[212]  J. Amano,et al.  Thin film deposition using low-energy ion beams. I. System specification and design , 1976 .

[213]  H. Werner,et al.  Influence of annealing on the concentration profiles of boron implantations in silicon , 1973 .

[214]  A. Yamada,et al.  Low‐temperature (600–650 °C) silicon epitaxy by excimer laser‐assisted chemical vapor deposition , 1989 .

[215]  F. G. Allen,et al.  Silicon triangular barrier diodes by MBE using solid-phase epitaxial regrowth , 1984, IEEE Electron Device Letters.

[216]  T. Tatsumi,et al.  Gas source Si-MBE , 1990 .

[217]  L. Breaux,et al.  Homoepitaxial films grown on Si (100) at 150 °C by remote plasma‐enhanced chemical vapor deposition , 1989 .

[218]  Heavily P-Doped (>1021cm-3) Silicon Films Grown by Photochemical Vapor Deposition at a Very Low Temperature of 250°C , 1989 .

[219]  D. Davies POST ANNEALING CONDUCTANCE BEHAVIOR OF IMPLANTED LAYERS IN SILICON , 1969 .

[220]  Eaglesham,et al.  Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100). , 1990, Physical review letters.

[221]  F. J. Morin,et al.  Electrical Properties of Silicon Containing Arsenic and Boron , 1954 .

[222]  T. Tatsumi,et al.  Boron heavy doping for Si molecular beam epitaxy using a HBO2 source , 1987 .

[223]  E. Parker,et al.  Elemental boron doping behavior in silicon molecular beam epitaxy , 1991 .

[224]  E. Kasper,et al.  Dependence of hole transport on Ga doping in Si molecular beam epitaxy layers , 1986 .

[225]  J. Comfort,et al.  Plasma‐enhanced deposition of high‐quality epitaxial silicon at low temperatures , 1987 .

[226]  J. V. D. Veen,et al.  Anomalous Sb redistribution during the preparation of delta-doping layers in silicon , 1991 .

[227]  Bernard S. Meyerson,et al.  Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition , 1986 .

[228]  B. Unvala Epitaxial Growth of Silicon by Vacuum Evaporation , 1962, Nature.

[229]  G. P. McCarthy,et al.  Surface Processes in the Growth of Silicon on (111) Silicon in Ultrahigh Vacuum , 1968 .

[230]  A. Vapaille,et al.  Steep doping profiles obtained by low-energy implantation of arsenic in silicon MBE layers , 1990 .

[231]  H. F. Winters,et al.  The interaction of Sb4 molecular beams with Si(100) surfaces: modulated-beam mass spectrometry and thermally stimulated desorption studies , 1986 .

[232]  M. Tabe,et al.  Kinetics of Antimony Doping in Silicon Molecular Beam Epitaxy , 1983 .

[233]  Bernard S. Meyerson,et al.  Nonequilibrium boron doping effects in low‐temperature epitaxial silicon films , 1987 .

[234]  Randall L. Headrick,et al.  Si(100)‐(2×1)boron reconstruction: Self‐limiting monolayer doping , 1990 .

[235]  T. Takagi,et al.  Al metallization by ionized-cluster beam deposition and epitaxy , 1985 .

[236]  C. Magee,et al.  Defect microstructure in single crystal silicon thin films grown at 150° C-305° C by remote plasma-enhanced chemical vapor deposition , 1990 .

[237]  W. Kern,et al.  Low-pressure chemical vapor deposition for very large-scale integration processing—A review , 1979, IEEE Transactions on Electron Devices.

[238]  M. Koelsch,et al.  Kinetics of Silicon Growth under Low Hydrogen Pressure , 1978 .

[239]  M. Denhoff,et al.  Boron redistribution in doping superlattices grown by silicon molecular beam epitaxy using B2O3 , 1988 .

[240]  Herzog,et al.  Kinetics of ordered growth of Si on Si(100) at low temperatures. , 1989, Physical review. B, Condensed matter.

[241]  J. A. Roth,et al.  Silicon epitaxy by solid‐phase crystallization of deposited amorphous films , 1977 .

[242]  I. Eisele,et al.  Delta-type doping profiles in silicon , 1989 .

[243]  A. Rockett,et al.  Indium incorporation during the growth of (100)Si by molecular beam epitaxy: Surface segregation and reconstruction , 1984 .

[244]  James F. Gibbons,et al.  Limited reaction processing: Silicon epitaxy , 1985 .