Some results on a certain type of difference equation originated from difference Painlevé I equation

[1]  Yunfei Du,et al.  Value distribution of meromorphic solutions of certain difference Painlevé equations , 2010 .

[2]  Chung-Chun Yang,et al.  Clunie theorems for difference and q‐difference polynomials , 2007 .

[3]  W. Bergweiler,et al.  Zeros of differences of meromorphic functions , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Y. Chiang,et al.  On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane , 2006, math/0609324.

[5]  R. Korhonen,et al.  Existence of finite-order meromorphic solutions as a detector of integrability in difference equations , 2006 .

[6]  R. Korhonen,et al.  Nevanlinna theory for the difference operator , 2005, math/0506011.

[7]  R. Korhonen,et al.  Finite‐order meromorphic solutions and the discrete Painlevé equations , 2005, nlin/0504026.

[8]  R. Korhonen,et al.  Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations , 2005, math/0504245.

[9]  Chung-Chun Yang,et al.  Uniqueness Theory of Meromorphic Functions , 2004 .

[10]  J. Heittokangas,et al.  Complex Difference Equations of Malmquist Type , 2001 .

[11]  B. Herbst,et al.  On the extension of the Painlevproperty to difference equations , 2000 .

[12]  Ramani,et al.  Do integrable mappings have the Painlevé property? , 1991, Physical review letters.

[13]  W. K. Hayman,et al.  On the characteristic of functions meromorphic in the unit disk and of their integrals , 1964 .