A General Framework for Computing Rearrangement Distances between Genomes with Duplicates
暂无分享,去创建一个
Guillaume Fertin | Irena Rusu | Stéphane Vialette | Sébastien Angibaud | G. Fertin | I. Rusu | Stéphane Vialette | Sébastien Angibaud
[1] Petr Kolman,et al. Reversal Distance for Strings with Duplicates: Linear Time Approximation using Hitting Set , 2006, Electron. J. Comb..
[2] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[3] Guillaume Fertin,et al. Genomes Containing Duplicates Are Hard to Compare , 2006, International Conference on Computational Science.
[4] Krister M. Swenson,et al. A Framework for Orthology Assignment from Gene Rearrangement Data , 2005, Comparative Genomics.
[5] Cedric Chauve,et al. Genes Order and Phylogenetic Reconstruction: Application to -Proteobacteria , 2005 .
[6] Takeaki Uno,et al. Fast Algorithms to Enumerate All Common Intervals of Two Permutations , 1997, Algorithmica.
[7] Petr Kolman,et al. Approximating reversal distance for strings with bounded number of duplicates , 2005, Discret. Appl. Math..
[8] Gad M. Landau,et al. Gene Proximity Analysis across Whole Genomes via PQ Trees1 , 2005, J. Comput. Biol..
[9] Xin Chen,et al. Assignment of orthologous genes via genome rearrangement , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[10] Bin Fu,et al. Lower Bounds on the Approximation of the Exemplar Conserved Interval Distance Problem of Genomes , 2006, COCOON.
[11] Karem A. Sakallah,et al. Pueblo: A Hybrid Pseudo-Boolean SAT Solver , 2006, J. Satisf. Boolean Model. Comput..
[12] Niklas Sörensson,et al. Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..
[13] D. Sankoff,et al. Comparative Genomics: "Empirical And Analytical Approaches To Gene Order Dynamics, Map Alignment And The Evolution Of Gene Families" , 2000 .
[14] Tao Jiang,et al. A Parsimony Approach to Genome-Wide Ortholog Assignment , 2006, RECOMB.
[15] Krister M. Swenson,et al. Genomic Distances under Deletions and Insertions , 2003, COCOON.
[16] D. Bryant. The Complexity of Calculating Exemplar Distances , 2000 .
[17] Krister M. Swenson,et al. Approximating the true evolutionary distance between two genomes , 2008, JEAL.
[18] David Sankoff,et al. Power Boosts for Cluster Tests , 2005, Comparative Genomics.
[19] Andreas Kuehlmann,et al. A fast pseudo-Boolean constraint solver , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[20] David Sankoff,et al. Genome rearrangement with gene families , 1999, Bioinform..
[21] G. Blin,et al. The breakpoint distance for signed sequences , 2005 .
[22] Nadia El-Mabrouk,et al. Reconstructing an ancestral genome using minimum segments duplications and reversals , 2002, J. Comput. Syst. Sci..
[23] Bin Fu,et al. The Approximability of the Exemplar Breakpoint Distance Problem , 2006, AAIM.
[24] Nadia El-Mabrouk,et al. Maximizing Synteny Blocks to Identify Ancestral Homologs , 2005, Comparative Genomics.
[25] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization , 1995 .
[26] Marek Chrobak,et al. The greedy algorithm for the minimum common string partition problem , 2005, TALG.
[27] Petr Kolman,et al. Minimum Common String Partition Problem: Hardness and Approximations , 2004, Electron. J. Comb..
[28] N. Moran,et al. From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria , 2003, PLoS biology.
[29] Mathieu Raffinot,et al. Computing Common Intervals of K Permutations, with Applications to Modular Decomposition of Graphs , 2005, ESA.