Large data limit for a phase transition model with the p-Laplacian on point clouds

The consistency of a non-local anisotropic Ginzburg–Landau type functional for data classification and clustering is studied. The Ginzburg–Landau objective functional combines a double well potential, that favours indicator valued functions, and the p-Laplacian, that enforces regularity. Under appropriate scaling between the two terms, minimisers exhibit a phase transition on the order of ɛ = ɛn, where n is the number of data points. We study the large data asymptotics, i.e. as n → ∝, in the regime where ɛn → 0. The mathematical tool used to address this question is Γ-convergence. It is proved that the discrete model converges to a weighted anisotropic perimeter.

[1]  Andrew M. Stuart,et al.  Large Data and Zero Noise Limits of Graph-Based Semi-Supervised Learning Algorithms , 2018, Applied and Computational Harmonic Analysis.

[2]  Yves van Gennip,et al.  Introduction: Big data and partial differential equations† , 2017, European Journal of Applied Mathematics.

[3]  Dejan Slepcev,et al.  Analysis of $p$-Laplacian Regularization in Semi-Supervised Learning , 2017, SIAM J. Math. Anal..

[4]  Gustavo K. Rohde,et al.  A Transportation Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Distance for Signal Analysis , 2016, Journal of Mathematical Imaging and Vision.

[5]  Nicolas Garcia Trillos,et al.  Variational Limits of k-NN Graph-Based Functionals on Data Clouds , 2016, SIAM J. Math. Data Sci..

[6]  Nicolas Garcia Trillos,et al.  A new analytical approach to consistency and overfitting in regularized empirical risk minimization , 2016, European Journal of Applied Mathematics.

[7]  Florian Theil,et al.  Asymptotic analysis of the Ginzburg–Landau functional on point clouds , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  S. Sethuraman,et al.  Consistency of modularity clustering on random geometric graphs , 2016, The Annals of Applied Probability.

[9]  Carola-Bibiane Schönlieb,et al.  Graph Clustering, Variational Image Segmentation Methods and Hough Transform Scale Detection for Object Measurement in Images , 2016, Journal of Mathematical Imaging and Vision.

[10]  D. Slepčev,et al.  On the Rate of Convergence of Empirical Measures in ∞-transportation Distance , 2015, Canadian Journal of Mathematics.

[11]  Dejan Slepcev,et al.  A variational approach to the consistency of spectral clustering , 2015, Applied and Computational Harmonic Analysis.

[12]  Daniel A. Spielman,et al.  Algorithms for Lipschitz Learning on Graphs , 2015, COLT.

[13]  Felix Otto,et al.  Threshold Dynamics for Networks with Arbitrary Surface Tensions , 2015 .

[14]  Xavier Bresson,et al.  Consistency of Cheeger and Ratio Graph Cuts , 2014, J. Mach. Learn. Res..

[15]  Nicolás García Trillos,et al.  On the rate of convergence of empirical measures in $\infty$-transportation distance , 2014, 1407.1157.

[16]  T. Chan,et al.  Multi-class Transductive Learning Based on ℓ1 Relaxations of Cheeger Cut and Mumford-Shah-Potts Model , 2014, Journal of Mathematical Imaging and Vision.

[17]  Nicolás García Trillos,et al.  Continuum Limit of Total Variation on Point Clouds , 2014, Archive for Rational Mechanics and Analysis.

[18]  Andrea L. Bertozzi,et al.  An MBO Scheme on Graphs for Classification and Image Processing , 2013, SIAM J. Imaging Sci..

[19]  Xavier Bresson,et al.  Multiclass Total Variation Clustering , 2013, NIPS.

[20]  Arjuna Flenner,et al.  Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Xavier Bresson,et al.  Convergence and Energy Landscape for Cheeger Cut Clustering , 2012, NIPS.

[22]  Arjuna Flenner,et al.  Diffuse Interface Models on Graphs for Classification of High Dimensional Data , 2012, SIAM Rev..

[23]  Andrea Braides,et al.  A Quantitative Description of Mesh Dependence for the Discretization of Singularly Perturbed Nonconvex Problems , 2012, SIAM J. Numer. Anal..

[24]  Enrico Valdinoci,et al.  Γ-convergence for nonlocal phase transitions , 2012 .

[25]  A. Bertozzi,et al.  $\Gamma$-convergence of graph Ginzburg-Landau functionals , 2012, Advances in Differential Equations.

[26]  Arthur D. Szlam,et al.  Total variation and cheeger cuts , 2010, ICML 2010.

[27]  A. Chambolle,et al.  Continuous limits of discrete perimeters , 2009, ESAIM: Mathematical Modelling and Numerical Analysis.

[28]  Chris Cannings Random Geometric Graphs , 2005 .

[29]  Augusto C. Ponce,et al.  A new approach to Sobolev spaces and connections to $\mathbf\Gamma$-convergence , 2004 .

[30]  C. Villani Topics in Optimal Transportation , 2003 .

[31]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[32]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[33]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[35]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[36]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[37]  G. Bellettini,et al.  A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies , 1998, European Journal of Applied Mathematics.

[38]  Giovanni Alberti,et al.  A nonlocal anisotropic model for phase transitions , 1998 .

[39]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[41]  Irene Fonseca,et al.  Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u) , 1993 .

[42]  Peter Sternberg,et al.  Nonconvex variational problems with anisotropic perturbations , 1991 .

[43]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[44]  A. Egger,et al.  Rate of Convergence of the Discrete Pólya-1 Algorithm , 1990 .

[45]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[46]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[47]  Alex Asbury,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[48]  MATTHEW THORPE,et al.  TRANSPORTATION Lp DISTANCES: PROPERTIES AND EXTENSIONS , 2017 .

[49]  A. Bertozzi,et al.  Γ-CONVERGENCE OF GRAPH GINZBURG–LANDAU FUNCTIONALS , 2012 .

[50]  T. Laurent,et al.  Asymmetric Cheeger cut and application to multi-class unsupervised clustering , 2012 .

[51]  Arthur D. Szlam,et al.  A Total Variation-based Graph Clustering Algorithm for Cheeger Ratio Cuts , 2009 .

[52]  I. Fonseca,et al.  Coupled singular perturbations for phase transitions , 2005 .

[53]  Andrea Braides Γ-convergence for beginners , 2002 .

[54]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[55]  Agnès Sulem,et al.  Optimal control and partial differential equations : in honour of professor Alain Bensoussan's 60th birthday , 2001 .

[56]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[57]  Ana Cristina Barroso,et al.  Anisotropic singular perturbations—the vectorial case , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[58]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[59]  G. Bouchitté,et al.  Singular perturbations of variational problems arising from a two-phase transition model , 1990 .

[60]  L. Tartar,et al.  The gradient theory of phase transitions for systems with two potential wells , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[61]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[62]  R. Ash,et al.  Real analysis and probability , 1975 .

[63]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[64]  Nicol´as Garc´ia Trillos,et al.  Variational Limits of K-nn Graph Based Functionals on Data Clouds , 2022 .

[65]  Sanjeev Arora,et al.  Expander Flows, Geometric Embeddings and Graph Partitioning , 2022 .