Hyper-parallel photonic quantum computation with coupled quantum dots

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

[1]  Fu-Guo Deng,et al.  Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. , 2013, Optics express.

[2]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[3]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[4]  D. R. Yakovlev,et al.  Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas , 1998 .

[5]  Yasunobu Nakamura,et al.  Deterministic photon-photon √ SWAP gate using a system , 2010 .

[6]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[7]  A. Zeilinger,et al.  Efficient quantum computing using coherent photon conversion , 2011, Nature.

[8]  Keiji Sasaki,et al.  Optimized phase switching using a single-atom nonlinearity , 2002, quant-ph/0208029.

[9]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[10]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2004, quant-ph/0403062.

[11]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[12]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[13]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[14]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[15]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[16]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[17]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[18]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[19]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[20]  Kyu-Hwang Yeon,et al.  Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity , 2013, 1309.0410.

[21]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[22]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[23]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[24]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[25]  J. Hvam,et al.  Long lived coherence in self-assembled quantum dots. , 2001, Physical review letters.

[26]  Pierre M. Petroff,et al.  A Coherent Single-Hole Spin in a Semiconductor , 2009, Science.

[27]  Isabelle Sagnes,et al.  Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar , 2010, 1011.1155.

[28]  M. S. Skolnick,et al.  Fine structure of charged and neutral excitons in InAs- Al 0.6 Ga 0.4 As quantum dots , 2002 .

[29]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[30]  Cristian Bonato,et al.  Permanent tuning of quantum dot transitions to degenerate microcavity resonances , 2011 .

[31]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[32]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[33]  K. Koshino,et al.  Deterministic photon-photon (SWAP)^{1/2} gate using a lambda system , 2009, 0909.4762.

[34]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[35]  Gilberto Medeiros-Ribeiro,et al.  Charged Excitons in Self-Assembled Semiconductor Quantum Dots , 1997 .

[36]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[37]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[38]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[39]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[40]  Fu-Guo Deng,et al.  Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. , 2014, Optics express.

[41]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[42]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[43]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[44]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[45]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[46]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[47]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[48]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[49]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[50]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[51]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[52]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[53]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.